login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131189
Numbers n >= 0 such that d(n) = (n^1 + 1)*(n^2 + 2) ... (n^14 + 14) / 14!, e(n) = (n^1 + 1)*(n^2 + 2) ... (n^15 + 15) / 15!, and f(n) = (n^1 + 1)*(n^2 + 2) ... (n^16 + 16) / 16! take nonintegral values.
3
2, 9, 16, 23, 30, 37, 51, 58, 65, 72, 79, 86, 100, 107, 114, 121, 128, 135, 149, 156, 163, 170, 177, 184, 198, 205, 212, 219, 226, 233, 247, 254, 261, 268, 275, 282, 296, 303, 310, 317, 324, 331, 345, 352, 359, 366, 373, 380, 394, 401, 408, 415, 422, 429
OFFSET
1,1
COMMENTS
Initial terms were calculated by Peter J. C. Moses; see comment in A129995.
From Max Alekseyev: (Start)
To check whether 14! divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 +14) it is enough to check whether every prime power q from the prime factorization of 14! divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for n=0,1,...,q-1.
Note that 14! = 2^11 * 3^5 * 5^2 * 7^2 * 11 * 13.
It is easy to verify that:
i) 2^11 divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for every n=0,1,...,2^11-1;
ii) 3^5 divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for every n=0,1,...,3^5-1;
iii) 7^2 divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for every n=0,1,...,7^2-1,
except for n=2, 9, 16, 23, 30, 37 (i.e., n of the form 7m+2 but not 49m+44);
iv) 11 divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for every n=0,1,...,11-1;
v) 13 divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for every n=0,1,...,13-1.
This proves that for k=14, a(n) is nonintegral only for n in the set difference { 7m+2} \ { 49m+44 }.
In simple cases like { 7m+2 } \ { 49m+44 }, one can get an explicit formula.
Note that { 7m+2 } \ { 49m+44 } can be viewed as the arithmetic sequence 7m + 2 where m cannot be 6 modulo 7.
The number of nonnegative integers equal to 6 modulo 7 not exceeding m is equal to floor((m+1)/7).
Therefore in our sequence the (m-floor((m+1)/7))-th term equals 7m+2 when m is minimum possible.
Let us find the minimum m satisfying m - floor((m+1)/7) = n.
Let t = (m+1) mod 7. Then m - ((m+1)-t)/7 = n or 6m+t-1 = 7n, implying that m = (7n-t+1)/6.
Depending on the value of t we have m = floor((7n+1)/6) or m = floor((7n+1)/6) - 1.
Since m must be the minimum possible, we have the second case when floor((7n+1)/6) mod 7 > (7n+1) mod 6; and the first case otherwise.
In other words, the explicit formula for m is m = floor((7n+1)/6) - 1, if floor((7n+1)/6) mod 7 > (7n+1) mod 6; m = floor((7n+1)/6), otherwise.
We can also consider all possible residues of n modulo 6*7 and find out that the inequality floor((7n+1)/6) mod 7 > (7n+1) mod 6 holds for n mod 42 in { 5, 11, 17, 23, 29, 35, 41 } or alternatively n mod 6 = 5.
Therefore m = floor((7n+1)/6) - 1, if n mod 6 = 5; m = floor((7n+1)/6), otherwise.
So for the sequence {2,9,16,23,30,37,51,58,65,72,79,86,100,...} we can give formula a(n) = 7*floor((7n+1)/6) - 5, if n mod 6 = 5; a(n) = 7*floor((7n+1)/6) + 2, otherwise.
(End)
FORMULA
a(n) = 7*floor((7n+1)/6) - 5, if n mod 6 = 5; a(n) = 7*floor((7n+1)/6) + 2, otherwise. For e(n) and g(n), proof is similar; see also the comments. - Max Alekseyev
G.f.: x*(12*x^6+7*x^5+7*x^4+7*x^3+7*x^2+7*x+2) / ((x-1)^2*(x+1)*(x^2-x+1)*(x^2+x+1)). - Colin Barker, Aug 08 2013
MAPLE
a:= n-> `if`((n-1) mod 6 = 5, 7*floor((7*n-6)/6)-5, 7*floor((7*n-6)/6)+2):
seq(a(n), n=1..80); # Alois P. Heinz, Aug 08 2013
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {2, 9, 16, 23, 30, 37, 51}, 50] (* G. C. Greubel, Feb 19 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(x*(12*x^6+7*x^5+7*x^4+7*x^3+7*x^2+7*x+2) / ((x-1)^2*(x+1)*(x^2-x+1)*(x^2+x+1))) \\ G. C. Greubel, Feb 19 2017
CROSSREFS
Sequence in context: A224859 A136345 A017005 * A288484 A011193 A085960
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Aug 08 2013
STATUS
approved