Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:45:30
%S 1,4,1,4,8,1,4,12,12,1,4,16,24,16,1,4,20,40,40,20,1,4,24,60,80,60,24,
%T 1,4,28,84,140,140,84,28,1,4,32,112,224,280,224,112,32,1,4,36,144,336,
%U 504,504,336,144,36,1
%N T(n,k) = 4*binomial(n,k) - 3*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
%H G. C. Greubel, <a href="/A131112/b131112.txt">Rows n = 0..100 of triangle, flattened</a>
%F T(n,k) = 4*A007318(n,k) - 3*I(n,k), where A007318 = Pascal's triangle and I = Identity matrix.
%F n-th row sum = A036563(n+2) = 2^(n+2) - 3.
%F Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 3*x - x*y)/((1 - x*y)*(1 - x - x*y)). - _Petros Hadjicostas_, Feb 20 2021
%e Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
%e 1;
%e 4, 1;
%e 4, 8, 1;
%e 4, 12, 12, 1;
%e 4, 16, 24, 16, 1;
%e 4, 20, 40, 40, 20, 1;
%e ...
%p seq(seq(`if`(k=n, 1, 4*binomial(n,k)), k=0..n), n=0..10); # _G. C. Greubel_, Nov 18 2019
%t Table[If[k==n, 1, 4*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 18 2019 *)
%o (PARI) T(n,k) = if(k==n, 1, 4*binomial(n,k)); \\ _G. C. Greubel_, Nov 18 2019
%o (Magma) [k eq n select 1 else 4*Binomial(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Nov 18 2019
%o (Sage)
%o def T(n, k):
%o if (k==n): return 1
%o else: return 4*binomial(n, k)
%o [[T(n, k) for k in (0..n)] for n in (0..10)]
%o # _G. C. Greubel_, Nov 18 2019
%o (GAP)
%o T:= function(n,k)
%o if k=n then return 1;
%o else return 4*Binomial(n,k);
%o fi; end;
%o Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Nov 18 2019
%Y Cf. A007318, A036563, A131110, A131111, A131113, A131114, A131115.
%K nonn,tabl,easy,less
%O 0,2
%A _Gary W. Adamson_, Jun 15 2007