login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Periodic sequence (15, 11, 5, 1, 1, 5, 11, 15).
7

%I #31 Apr 18 2024 09:47:03

%S 15,11,5,1,1,5,11,15,15,11,5,1,1,5,11,15,15,11,5,1,1,5,11,15,15,11,5,

%T 1,1,5,11,15,15,11,5,1,1,5,11,15,15,11,5,1,1,5,11,15,15,11,5,1,1,5,11,

%U 15,15,11,5,1,1,5,11,15,15,11,5,1,1,5,11,15,15,11,5,1,1,5,11,15,15,11,5,1

%N Periodic sequence (15, 11, 5, 1, 1, 5, 11, 15).

%C Fifth column of triangular array T defined in A131074.

%C Simple continued fraction of (1728521 + sqrt(3040737300437))/230114 = 15.0894426240... - _R. J. Mathar_, Mar 08 2012

%H Antti Karttunen, <a href="/A131082/b131082.txt">Table of n, a(n) for n = 1..8192</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,-1,1).

%F a(n) = a(n-8).

%F G.f.: x*(15 - 4*x - 6*x^2 - 4*x^3 + 15*x^4)/((1-x)*(1+x^4)).

%t PadRight[{},100,{15,11,5,1,1,5,11,15}] (* or *) LinearRecurrence[ {1,0,0,-1,1},{15,11,5,1,1},100] (* _Harvey P. Dale_, Feb 01 2015 *)

%o (PARI) {m=84; for(n=1, m, r=(n-1)%8; print1(if(r==0||r==7, 15, if(r==1||r==6, 11, if(r==2||r==5, 5, 1))), ","))}

%o (Magma) m:=84; [ [15, 11, 5, 1, 1, 5, 11, 15][(n-1) mod 8 + 1]: n in [1..m] ];

%o (Scheme) (define (A131082 n) (list-ref '(15 11 5 1 1 5 11 15) (modulo (- n 1) 8))) ;; _Antti Karttunen_, Aug 10 2017

%Y Cf. A131029, A131074.

%K nonn,easy

%O 1,1

%A _Klaus Brockhaus_, following a suggestion of _Paul Curtz_, Jun 14 2007