%I #22 Sep 08 2022 08:45:30
%S 1,1,1,1,7,1,1,13,13,1,1,19,31,19,1,1,25,55,55,25,1,1,31,85,115,85,31,
%T 1,1,37,121,205,205,121,37,1,1,43,163,331,415,331,163,43,1,1,49,211,
%U 499,751,751,499,211,49,1,1,55,265,715,1255,1507,1255,715,265,55,1
%N Triangle read by rows: T(n,k) = 6*binomial(n,k) - 5 for 0 <= k <= n.
%C Row sums = A131066.
%C The matrix inverse starts:
%C 1;
%C -1, 1;
%C 6, -7, 1;
%C -66, 78, -13, 1;
%C 1086, -1284, 216, -19, 1;
%C -23826, 28170, -4740, 420, -25, 1;
%C 653406, -772536, 129990, -11520, 690, -31, 1; - _R. J. Mathar_, Mar 12 2013
%H Indranil Ghosh, <a href="/A131065/b131065.txt">Rows 0..120 of triangle, flattened</a>
%F G.f.: (1-z-t*z+6*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - _Emeric Deutsch_, Jun 20 2007
%e First few rows of the triangle are:
%e 1;
%e 1, 1;
%e 1, 7, 1;
%e 1, 13, 13, 1;
%e 1, 19, 31, 19, 1;
%e 1, 25, 55, 55, 25, 1;
%e ...
%p T := proc (n, k) if k <= n then 6*binomial(n, k)-5 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # _Emeric Deutsch_, Jun 20 2007
%t Table[6*Binomial[n,k]-5,{n,0,15},{k,0,n}]//Flatten (* _Harvey P. Dale_, May 15 2016 *)
%o (Magma) [6*Binomial(n,k) -5: k in [0..n], n in [0..10]]; // _G. C. Greubel_, Mar 12 2020
%o (Sage) [[6*binomial(n,k) -5 for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Mar 12 2020
%Y Cf. A109128, A123203, A131060, A131061, A131063, A131064, A131066, A131067, A131068.
%K nonn,tabl
%O 0,5
%A _Gary W. Adamson_, Jun 13 2007
%E More terms from _Emeric Deutsch_, Jun 20 2007