login
A131051
Row sums of triangle A133805.
10
1, 3, 8, 18, 38, 78, 158, 318, 638, 1278, 2558, 5118, 10238, 20478, 40958, 81918, 163838, 327678, 655358, 1310718, 2621438, 5242878, 10485758, 20971518, 41943038, 83886078, 167772158, 335544318, 671088638, 1342177278, 2684354558
OFFSET
1,2
COMMENTS
Last digit of a(n) is 8 for n > 2. - Jon Perry, Nov 19 2012
FORMULA
Binomial transform of [1, 2, 3, 2, 3, 2, 3, ...].
O.g.f.: (1+x^2)/((1-x)(1-2*x)). a(n)=A051633(n-2). - R. J. Mathar, Jun 13 2008
a(n) = 5*2^(n-2)-2, n>1. - Gary Detlefs, Jun 22 2010
a(n) = 2(n-1) + Sum_{i=1..n-1} a(i). - Jon Perry, Nov 19 2012
EXAMPLE
a(4) = 18 = sum of row 4 terms of triangle A133805: (7 + 6 + 4 + 1).
a(4) = 18 = (1, 3, 3, 1), dot (1, 2, 3, 2) = (1 + 6 + 9 + 2).
PROG
(Magma) a:=[1]; for n in [2..31] do Append(~a, 2*n-2+&+[a[i]:i in [1..n-1]]); end for; a; // Marius A. Burtea, Oct 15 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 31); Coefficients(R!( (1+x^2)/((1-x)*(1-2*x)))); // Marius A. Burtea, Oct 15 2019
CROSSREFS
Essentially a duplicate of A051633.
Cf. A133805.
Sequence in context: A000235 A006478 A104187 * A051633 A172265 A258272
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Sep 23 2007
EXTENSIONS
More terms from R. J. Mathar, Jun 13 2008
STATUS
approved