Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 26 2019 05:03:44
%S 1,2,5,12,29,68,155,348,775,1712,3745,8112,17431,37252,79355,168710,
%T 358037,758020,1599675,3362876,7041593,14692956,30577435,63531092,
%U 131901879,273804738,568366037,1179585610,2446603047,5068970880
%N Binomial transform of Euler's totient function phi(n+1).
%H Vaclav Kotesovec, <a href="/A131045/b131045.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{j=0..n} binomial(n,j)*phi(j+1). - _Emeric Deutsch_, Jul 09 2007
%e a(3) = (1,3,3,1) dot (1,1,2,2) = 1 + 3 + 6 + 2 = 12.
%p with(numtheory); a := proc (n) options operator, arrow; sum(binomial(n, j)*phi(j+1), j = 0 .. n) end proc; seq(a(n), n = 0 .. 30); # _Emeric Deutsch_, Jul 09 2007
%t Table[Sum[Binomial[n,k]*EulerPhi[k+1], {k, 0, n}], {n, 0, 30}] (* _Vaclav Kotesovec_, Oct 30 2017 *)
%o (PARI) a(n) = sum(j=0, n, binomial(n,j)*eulerphi(j+1)); \\ _Michel Marcus_, Feb 26 2019
%Y Cf. A000010, A007318.
%K nonn
%O 0,2
%A _Gary W. Adamson_, Jun 11 2007
%E More terms from _Emeric Deutsch_, Jul 09 2007