login
Continued fraction representation of Erdos constant d = 1-(1+log(log(2)))/log(2) = 0.08607133....whose decimal expansion is A074738.
1

%I #15 Sep 08 2022 08:45:30

%S 0,11,1,1,1,1,1,1,1,2,3,2,1,4,1,1,10,1,1,8,2,18,2,6,1,2,1,2,2,1,1,1,4,

%T 8,2,1,3,2,19,2,1,1,2,2,7,1,7,1,17,3,3,4,1,1,87,4,1,2,11,12,16,1,1,2

%N Continued fraction representation of Erdos constant d = 1-(1+log(log(2)))/log(2) = 0.08607133....whose decimal expansion is A074738.

%H G. C. Greubel, <a href="/A130837/b130837.txt">Table of n, a(n) for n = 1..10000</a>

%H Kevin Ford, <a href="https://arxiv.org/abs/math/0607473">Integers with a divisor in (y,2y]</a>, arXiv:math/0607473 [math.NT], 2006-20013. To appear in the proceedings of the workshop Anatomy of Integers (Montreal, 2006).

%t ContinuedFraction[1 - (1 + Log[Log[2]])/Log[2], 100] (* _G. C. Greubel_, Apr 16 2018 *)

%o (PARI) contfrac(1-(1+log(log(2)))/log(2)) \\ _G. C. Greubel_, Apr 16 2018

%o (Magma) ContinuedFraction(1-(1+Log(Log(2)))/Log(2)); // _G. C. Greubel_, Apr 16 2018

%Y Cf. A074738.

%K cofr,nonn

%O 1,2

%A _Jonathan Vos Post_, Jul 19 2007