Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 08 2023 10:15:13
%S 1,2,3,4,6,7,16,28,31,38,127,256,278,469,1298,3477,7298,7525,8191,
%T 13969,19909,26738,31492,65536,99381,131071,357698,524287,20742482,
%U 33550336,772499089,1959272066
%N Numbers n such that the sum of the proper divisors of n and n+1 equals either n or n+1.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AliquotDivisor.html">Aliquot Divisor</a>.
%e 16 has the proper divisors 1,2,4 and 8. 17 has the proper divisor 1. The sum of those divisors is 16, therefore 16 is in the sequence.
%t Select[Range[1000000], DivisorSigma[1, # ] + DivisorSigma[1, # + 1] - 2*# - 1 == # || DivisorSigma[1, # ] + DivisorSigma[1, # + 1] - 2*# - 1 == # + 1 &]
%t lst = {}; d1 = d2 = 1; Do[ d2 = DivisorSigma[1, n + 1]; d = d1 + d2 - 2 n - 1; If[d == n || d == n + 1, Print@n; AppendTo[lst, n]]; d1 = d2, {n, 2*10^9}]; lst (* _Robert G. Wilson v_, Jul 27 2007 *)
%K nonn,more
%O 1,2
%A _J. M. Bergot_, Jul 14 2007
%E Edited, corrected and extended by _Stefan Steinerberger_, Jul 16 2007
%E a(29)-a(32) from _Robert G. Wilson v_, Jul 27 2007