login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130631 Multiplicative persistence of Fibonacci numbers. 0
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 2, 2, 4, 1, 2, 3, 2, 2, 2, 1, 4, 2, 3, 1, 3, 3, 4, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

COMMENTS

From the 184th terms on all the Fibonacci numbers have same digits equal to zero thus the persistence is equal to 1.

LINKS

Table of n, a(n) for n=0..102.

EXAMPLE

3524578 -> 3*5*2*4*5*7*8 = 33600 -> 3*3*6*0*0 = 0 -> persistence = 2.

MAPLE

P:=proc(n)local f0, f1, f2, i, k, w, ok, cont; f0:=0; f1:=1; print(0); print(0); for i from 0 by 1 to n do f2:=f1+f0; f0:=f1; f1:=f2; w:=1; ok:=1; k:=f2; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(100);

CROSSREFS

Cf. A000045.

Sequence in context: A107901 A334236 A030423 * A282014 A241539 A213512

Adjacent sequences:  A130628 A130629 A130630 * A130632 A130633 A130634

KEYWORD

easy,nonn,base

AUTHOR

Paolo P. Lava and Giorgio Balzarotti, Jun 19 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 12:32 EDT 2020. Contains 334681 sequences. (Running on oeis4.)