Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Feb 15 2020 10:52:27
%S 0,40,901,1077,1281,6160,7180,8364,36777,42721,49621,215220,249864,
%T 290080,1255261,1457181,1691577,7317064,8493940,9860100,42647841,
%U 49507177,57469741,248570700,288549840,334959064,1448777077,1681792581
%N Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+359)^2 = y^2.
%C Also values x of Pythagorean triples (x, x+359, y).
%C Corresponding values y of solutions (x, y) are in A159844.
%C For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
%C lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
%C lim_{n -> infinity} a(n)/a(n-1) = (363+38*sqrt(2))/359 for n mod 3 = {1, 2}.
%C lim_{n -> infinity} a(n)/a(n-1) = (293619+186550*sqrt(2))/359^2 for n mod 3 = 0.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,6,-6,0,-1,1).
%F a(n) = 6*a(n-3)-a(n-6)+718 for n > 6; a(1)=0, a(2)=40, a(3)=901, a(4)=1077, a(5)=1281, a(6)=6160.
%F G.f.: x*(40+861*x+176*x^2-36*x^3-287*x^4-36*x^5) / ((1-x)*(1-6*x^3+x^6)).
%F a(3*k+1) = 359*A001652(k) for k >= 0.
%o (PARI) {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+718*n+128881), print1(n, ",")))}
%Y Cf. A159844, A028871, A118337, A130609, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159845 (decimal expansion of (363+38*sqrt(2))/359), A159846 (decimal expansion of (293619+186550*sqrt(2))/359^2).
%K nonn,easy
%O 1,2
%A _Mohamed Bouhamida_, Jun 17 2007
%E Edited and two terms added by _Klaus Brockhaus_, Apr 30 2009