login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130557 Numerators of partial sums of a series for 6*(5 - 4*Zeta(3)). 2
1, 10, 409, 10297, 8031, 394019, 9462581, 766743461, 8435956183, 1020884056543, 13272613316059, 2243198436149971, 2243285892433171, 2243347792046947, 305101392961615867, 88175602457796281563, 186150555360181760633 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

Denominators are given in A130558.

The rational sequence r(n) = 24*Sum_{j=2..n} 1/(j^3*(j^2-1)), n >= 2, tends, in the limit n->infinity, to 6*(5-4*Zeta(3)) which is approximately 1.15063433.

REFERENCES

Z. A. Melzak, Companion to concrete mathematics,( Vol.I), Wiley, New York, 1973, pp. 83-84.

LINKS

Table of n, a(n) for n=2..18.

W. Lang, Rationals and limit.

FORMULA

a(n) = numerator(r(n)), n >= 2, with the rationals r(n) defined above.

EXAMPLE

Rationals r(n), n >= 2: 1, 10/9, 409/360, 10297/9000, 8031/7000, 394019/343000, ....

CROSSREFS

Cf. A130551/A130552 with the limit (4/5)*Zeta(3).

Sequence in context: A098722 A162677 A041767 * A231052 A085000 A248553

Adjacent sequences:  A130554 A130555 A130556 * A130558 A130559 A130560

KEYWORD

nonn,frac,easy

AUTHOR

Wolfdieter Lang, Jul 13 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 09:16 EDT 2020. Contains 336274 sequences. (Running on oeis4.)