Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #59 Aug 26 2024 09:55:24
%S 1,2,1,3,1,2,4,2,1,3,5,3,1,2,4,6,4,2,1,3,5,7,5,3,1,2,4,6,8,6,4,2,1,3,
%T 5,7,9,7,5,3,1,2,4,6,8,10,8,6,4,2,1,3,5,7,9,11,9,7,5,3,1,2,4,6,8,10,
%U 12,10,8,6,4,2,1,3,5,7,9,11,13,11,9,7,5,3,1,2,4,6,8,10,12,14,12,10
%N Triangle read by rows: row n counts down from n in steps of 2, then counts up the remaining elements in the set {1,2,...,n}, again in steps of 2.
%C Triangle read by rows in which row n lists the number of pairs of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order.
%C Row n lists a permutation of the first n positive integers.
%C If n is odd then row n lists the first (n+1)/2 odd numbers in decreasing order together with the first (n-1)/2 positive even numbers.
%C If n is even then row n lists the first n/2 even numbers in decreasing order together with the first n/2 odd numbers.
%C Row n >= 2, with its floor(n/2) last numbers taken as negative, lists the n different eigenvalues (in decreasing order) of the odd graph O(n). The odd graph O(n) has the (n-1)-subsets of a (2*n-1)-set as vertices, with two (n-1)-subsets adjacent if and only if they are disjoint. For example, O(3) is isomorphic to the Petersen graph. - _Miquel A. Fiol_, Apr 07 2024
%H Reinhard Zumkeller, <a href="/A130517/b130517.txt">Rows n = 1..120 of triangle, flattened</a>
%H N. Bigss, <a href="https://doi.org/10.1017/CBO9780511608704">Algebraic Graph Theory</a>, Cambridge Univ. Press, Cambridge, 1974.
%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a>, 2012, arXiv:1212.2732 [math.CO], 2012.
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OddGraph.html">Odd graph</a>
%F a(n) = A162630(n)/2. - _Omar E. Pol_, Sep 02 2012
%F T(1,1) = 1; for n > 1: T(n,1) = T(n-1,1)+1 and T(n,k) = T(n-1,n-k+1), 1 < k <= n. - _Reinhard Zumkeller_, Dec 03 2012
%F From _Boris Putievskiy_, Jan 16 2013: (Start)
%F a(n) = |2*A000027(n) - A003056(n)^2 - 2*A003056(n) - 3| + floor((2*A000027(n) - A003056(n)^2 - A003056(n))/(A003056(n)+3)).
%F a(n) = |2*n - t^2 - 2*t - 3| + floor((2*n - t^2 - t)/(t+3)) where t = floor((-1+sqrt(8*n-7))/2). (End)
%e A geometric model of the atomic nucleus:
%e ......-------------------------------------------------
%e ......|...-----------------------------------------...|
%e ......|...|...---------------------------------...|...|
%e ......|...|...|...-------------------------...|...|...|
%e ......|...|...|...|...-----------------...|...|...|...|
%e ......|...|...|...|...|...---------...|...|...|...|...|
%e ......|...|...|...|...|...|...-...|...|...|...|...|...|
%e ......i...h...g...f...d...p...s...p...d...f...g...h...i
%e ......|...|...|...|...|...|.......|...|...|...|...|...|
%e ......|...|...|...|...|.......1.......|...|...|...|...|
%e ......|...|...|...|.......2.......1.......|...|...|...|
%e ......|...|...|.......3.......1.......2.......|...|...|
%e ......|...|.......4.......2.......1.......3.......|...|
%e ......|.......5.......3.......1.......2.......4.......|
%e ..........6.......4.......2.......1.......3.......5....
%e ......7.......5.......3.......1.......2.......4.......6
%e .......................................................
%e ...13/2.11/2.9/2.7/2.5/2.3/2.1/2.1/2.3/2.5/2.7/2.9/2.11/2
%e ......|...|...|...|...|...|...|...|...|...|...|...|...|
%e ......|...|...|...|...|...|...-----...|...|...|...|...|
%e ......|...|...|...|...|...-------------...|...|...|...|
%e ......|...|...|...|...---------------------...|...|...|
%e ......|...|...|...-----------------------------...|...|
%e ......|...|...-------------------------------------...|
%e ......|...---------------------------------------------
%e .
%e Triangle begins:
%e 1;
%e 2, 1;
%e 3, 1, 2;
%e 4, 2, 1, 3;
%e 5, 3, 1, 2, 4;
%e 6, 4, 2, 1, 3, 5;
%e 7, 5, 3, 1, 2, 4, 6;
%e 8, 6, 4, 2, 1, 3, 5, 7;
%e 9, 7, 5, 3, 1, 2, 4, 6, 8;
%e 10, 8, 6, 4, 2, 1, 3, 5, 7, 9;
%e ...
%e Also:
%e 1;
%e 2, 1;
%e 3, 1, 2;
%e 4, 2, 1, 3;
%e 5, 3, 1, 2, 4;
%e 6, 4, 2, 1, 3, 5;
%e 7, 5, 3, 1, 2, 4, 6;
%e 8, 6, 4, 2, 1, 3, 5, 7;
%e 9, 7, 5, 3, 1, 2, 4, 6, 8;
%e 10, 8, 6, 4, 2, 1, 3, 5, 7, 9;
%e ...
%e In this view each column contains the same numbers.
%e From _Miquel A. Fiol_, Apr 07 2024: (Start)
%e Eigenvalues of the odd graphs O(n) for n=2..10:
%e 2, -1;
%e 3, 1, -2;
%e 4, 2, -1, -3;
%e 5, 3, 1, -2, -4;
%e 6, 4, 2, -1, -3, -5;
%e 7, 5, 3, 1, -2, -4, -6;
%e 8, 6, 4, 2, -1, -3, -5, -7;
%e 9, 7, 5, 3, 1, -2, -4, -6, -8;
%e 10, 8, 6, 4, 2, -1, -3, -5, -7, -9;
%e ... (End)
%p A130517 := proc(n,k)
%p if k <= (n+1)/2 then
%p n-2*(k-1) ;
%p else
%p 1-n+2*(k-1) ;
%p end if;
%p end proc: # _R. J. Mathar_, Jul 21 2012
%t t[n_, 1] := n; t[n_, n_] := n-1; t[n_, k_] := Abs[2*k-n - If[2*k <= n+1, 2, 1]]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Oct 03 2013, from abs(A056951) *)
%o (Haskell)
%o a130517 n k = a130517_tabl !! (n-1) !! (k-1)
%o a130517_row n = a130517_tabl !! (n-1)
%o a130517_tabl = iterate (\row -> (head row + 1) : reverse row) [1]
%o -- _Reinhard Zumkeller_, Dec 03 2012
%o (PARI) a130517_row(n) = my(v=vector(n), s=1, n1=0, n2=n+1); forstep(k=n, 1,-1, s=-s; if(s>0, n2--; v[n2]=k, n1++; v[n1]=k)); v \\ _Hugo Pfoertner_, Aug 26 2024
%Y Absolute values of A056951. Column 1 is A000027. Row sums are in A000217.
%Y Cf. A130556, A130598, A130602.
%Y Other versions are A004736, A212121, A213361, A213371.
%Y Cf. A028310 (right edge), A000012 (central terms), A220073 (mirrored), A220053 (partial sums in rows), A375303.
%K nonn,tabl,easy
%O 1,2
%A _Omar E. Pol_, Aug 08 2007