login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (k mod 8) (Partial sums of A010877).
13

%I #28 Oct 21 2022 21:59:47

%S 0,1,3,6,10,15,21,28,28,29,31,34,38,43,49,56,56,57,59,62,66,71,77,84,

%T 84,85,87,90,94,99,105,112,112,113,115,118,122,127,133,140,140,141,

%U 143,146,150,155,161,168,168,169,171,174,178,183,189,196,196,197,199,202,206

%N a(n) = Sum_{k=0..n} (k mod 8) (Partial sums of A010877).

%C Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 8, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - _Milan Janjic_, Jan 24 2010

%H Shawn A. Broyles, <a href="/A130486/b130486.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,-1).

%F a(n) = 28*floor(n/8) + A010877(n)*(A010877(n) + 1)/2.

%F G.f.: (Sum_{k=1..7} k*x^k)/((1-x^8)*(1-x)).

%F G.f.: x*(1 - 8*x^7 + 7*x^8)/((1-x^8)*(1-x)^3).

%p seq(coeff(series(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3), x, n+1), x, n), n = 0 .. 40); # _G. C. Greubel_, Aug 31 2019

%t Array[28 Floor[#1/8] + #2 (#2 + 1)/2 & @@ {#, Mod[#, 8]} &, 61, 0] (* _Michael De Vlieger_, Apr 28 2018 *)

%t Accumulate[PadRight[{},100,Range[0,7]]] (* _Harvey P. Dale_, Dec 21 2018 *)

%o (PARI) a(n) = sum(k=0, n, k % 8); \\ _Michel Marcus_, Apr 28 2018

%o (Magma) I:=[0,1,3,6,10,15,21,28,28]; [n le 9 select I[n] else Self(n-1) + Self(n-8) - Self(n-9): n in [1..71]]; // _G. C. Greubel_, Aug 31 2019

%o (Sage)

%o def A130486_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3)).list()

%o A130486_list(70) # _G. C. Greubel_, Aug 31 2019

%o (GAP) a:=[0,1,3,6,10,15,21,28,28];; for n in [10..71] do a[n]:=a[n-1]+a[n-8]-a[n-9]; od; a; # _G. C. Greubel_, Aug 31 2019

%Y Cf. A010872, A010873, A010874, A010875, A010876, A010878. A130481, A130482, A130483, A130484, A130485, A130487.

%K nonn,easy

%O 0,3

%A _Hieronymus Fischer_, May 31 2007