Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Sep 08 2022 08:45:30
%S 0,1,3,6,10,10,11,13,16,20,20,21,23,26,30,30,31,33,36,40,40,41,43,46,
%T 50,50,51,53,56,60,60,61,63,66,70,70,71,73,76,80,80,81,83,86,90,90,91,
%U 93,96,100,100,101,103,106,110,110,111,113,116,120,120,121,123,126,130,130
%N a(n) = Sum_{k=0..n} (k mod 5) (Partial sums of A010874).
%C Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 5, A[i,i]=1, A[i,i-1]=-1. Then, for n>=1, a(n)=det(A). - _Milan Janjic_, Jan 24 2010
%H Shawn A. Broyles, <a href="/A130483/b130483.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F a(n) = 10*floor(n/5) + A010874(n)*(A010874(n)+1)/2.
%F G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3)/((1-x^5)*(1-x)).
%F From _Wesley Ivan Hurt_, Jul 23 2016: (Start)
%F a(n) = a(n-5) - a(n-6) for n>5; a(n) = a(n-5) + 10 for n>4.
%F a(n) = 10 + Sum_{k=1..4} k*floor((n-k)/5). (End)
%F a(n) = ((n mod 5)^2 - 3*(n mod 5) + 4*n)/2. - _Ammar Khatab_, Aug 13 2020
%p seq(coeff(series(x*(1+2*x+3*x^2+4*x^3)/((1-x^5)*(1-x)), x, n+1), x, n), n = 0..70); # _G. C. Greubel_, Aug 31 2019
%t Accumulate[Mod[Range[0,70],5]] (* or *) Accumulate[PadRight[{},70,{0,1,2,3,4}]] (* _Harvey P. Dale_, Nov 11 2016 *)
%o (PARI) a(n) = sum(k=0, n, k % 5); \\ _Michel Marcus_, Apr 28 2018
%o (Magma) I:=[0,1,3,6,10,10]; [n le 6 select I[n] else Self(n-1) + Self(n-5) - Self(n-6): n in [1..71]]; // _G. C. Greubel_, Aug 31 2019
%o (Sage)
%o def A130483_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P(x*(1+2*x+3*x^2+4*x^3)/((1-x^5)*(1-x))).list()
%o A130483_list(70) # _G. C. Greubel_, Aug 31 2019
%o (GAP) a:=[0,1,3,6,10,10];; for n in [7..71] do a[n]:=a[n-1]+a[n-5]-a[n-6]; od; a; # _G. C. Greubel_, Aug 31 2019
%Y Cf. A010872, A010873, A010875, A010876, A010877, A130481, A130482, A130484, A130485.
%K nonn,easy
%O 0,3
%A _Hieronymus Fischer_, May 29 2007