%I #2 Mar 30 2012 18:37:04
%S 1,2,12,83,617,4759,37649,303372,2480181,20518329,171457967,
%T 1445229218,12274844031,104959302925,902902513636,7809311838692,
%U 67875146116705,592568780652517,5194275815373130,45700207950481330,403444930677602011
%N Main diagonal of square array A130462.
%C All upper diagonals of square array A130462 have a g.f. D(x,n) equal to the product of this main diagonal g.f. D(x,0) and a power of G(x), the g.f. of A002293: D(x,n) = D(x,0)*G(x)^n, where G(x) satisfies G(x) = 1 + x*G(x)^4.
%e Square array A130462 begins:
%e (1), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
%e (1), (2), 3, 4, 5, 6, 7, 8, 9, 10, ...;
%e (3), 7, (12), 18, 25, 33, 42, 52, ...;
%e (7), 25, 50, (83), 125, 177, 240, ...;
%e (25), 75, 200, 377, (617), 932, ...;
%e (75), 275, 652, 1584, 2919, (4759), ...; ...
%e where row n+1 equals the partial sums of the sequence resulting from removing the terms in the first column and main diagonal from row n.
%Y Cf. A130462 (array), A130463 (first column); A002293.
%K nonn
%O 0,2
%A _Paul D. Hanna_, May 26 2007