%I
%S 1,1,1,1,1,1,1,1,2,1,1,1,2,3,1,1,1,2,6,4,1,1,1,2,6,12,5,1,1,1,2,6,24,
%T 20,6,1,1,1,2,6,24,60,30,7,1,1,1,2,6,24,120,120,42,8,1,1,1,2,6,24,120,
%U 360,210,56,9,1,1,1,2,6,24,120,720,840,336,72,10,1,1,1,2,6,24,120,720,2520
%N Triangle, antidiagonals of an array generated from A130460.
%C Rows tend to the factorials: (1, 1, 2, 6, 24,...). Row sums = A130476: (1, 2, 3, 5, 8, 15, 28, 61, 132,...).
%F Let A130460 = M, an infinite lower triangular matrix and V = [1, 1, 1,...], the first row of an array. Perform M * V = second row,...; (n+1)th row = M * nth row. The triangle = antidiagonals of the array.
%e The array =
%e 1,...1,...1,...1,....1,....1,...
%e 1,...1,...2,...3,....4,....5,...
%e 1,...1,...2,...6,...12,...20,...
%e 1,...1,...2,...6,...24,...60,...
%e 1,...1,...2,...6,...24,..120,...
%e 1,...1,...2,...6,...24,..120,...
%e ...
%e First few rows of the triangle are:
%e 1;
%e 1, 1;
%e 1, 1, 1;
%e 1, 1, 2, 1;
%e 1, 1, 2, 3, 1;
%e 1, 1, 2, 6, 4, 1;
%e 1, 1, 2, 6, 12, 5, 1;
%e 1, 1, 2, 6, 24, 20, 6, 1;
%e 1, 1, 2, 6, 24, 60, 30, 7, 1;
%e ...
%Y Cf. A130460, A130476, A130477, A130478.
%K nonn,tabl
%O 0,9
%A _Gary W. Adamson_, May 28 2007
%E a(23) and a(38) corrected by _Gionata Neri_, Jun 22 2016
