login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130421 Numbers n such that 4^n == 2 (mod n). 10

%I

%S 1,2,14,1022,20066,80519,107663,485918,1284113,1510313,2531678,

%T 3677198,3933023,4557713,8277458,8893262,21122318,24849833,26358638,

%U 39852014,42448478,71871113,76712318,80646143,98058097,104832833,106694033,131492498,144322478,146987033,164360606,168204191,175126478,176647378,188997463,196705598

%N Numbers n such that 4^n == 2 (mod n).

%C Some terms above 10^15: 26435035805519327, 158975398896178078, 64044049390757098943, 1063423126446412987081943, 1091220919655042176978844783, 81074850280355100090334498663, 6317483763950169936179578094903, 5672799393875320397186007124651847, 170923900137537174138295268515194974, 195746953975871672436191077726091399305155458, 325665752547333314939363628501536024940097079718953, 953533053776414279913696071891872697927468471633033, 85791212788381063775490416118630897060666265030605503, 334519297382630382793758729321508383611586565722054114034741260213364710519401967713. - _Max Alekseyev_, Jun 18 2014

%H Max Alekseyev, <a href="/A130421/b130421.txt">Table of n, a(n) for n = 1..2617</a> (all terms below 10^15)

%t Join[{1,2},Select[Range[107000000],PowerMod[4,#,#]==2&]] (* _Harvey P. Dale_, Jun 13 2013 *)

%Y Cf. A006935 (odd terms times 2), A130422, A347906 (odd terms), A347908 (even terms).

%K nonn,changed

%O 1,2

%A _Jon E. Schoenfield_, May 26 2007

%E Terms a(28) onward from _Max Alekseyev_, Jun 18 2014

%E b-file corrected by _Max Alekseyev_, Oct 09 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 26 14:28 EDT 2021. Contains 348267 sequences. (Running on oeis4.)