login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Signature permutation of a Catalan automorphism: swap the two rightmost subtrees of general trees, if the root degree (A057515(n)) is even.
4

%I #5 Mar 31 2012 13:21:14

%S 0,1,2,3,4,6,5,7,8,9,10,11,16,19,14,15,12,17,18,13,20,21,22,23,25,24,

%T 26,27,28,29,30,44,47,33,53,56,60,37,38,39,43,52,42,40,31,45,46,32,48,

%U 49,50,51,41,34,54,55,35,57,58,59,36,61,62,63,64,65,66,67,72,75,70,71

%N Signature permutation of a Catalan automorphism: swap the two rightmost subtrees of general trees, if the root degree (A057515(n)) is even.

%C This self-inverse automorphism is obtained as either SPINE(*A129608) or ENIPS(*A129608). See the definitions given in A122203 and A122204.

%H A. Karttunen, <a href="/A130339/b130339.txt">Table of n, a(n) for n = 0..2055</a>

%H <a href="/index/Per#IntegerPermutationCatAuto">Index entries for signature-permutations of Catalan automorphisms</a>

%o (Destructive Scheme implementation of this automorphism, which acts on S-expressions, i.e. list-structures:)

%o (define (*A130339! s) (if (even? (length s)) (*A129608! s)) s)

%Y Cf. a(n) = A057508(A130340(A057508(n))) = A057164(A130340(A057164(n))). Row 3608 of A122285 and A122286. a(n) = A129608(n), if A057515(n) mod 2 = 0, otherwise a(n)=n.

%K nonn

%O 0,3

%A _Antti Karttunen_, Jun 05 2007