Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Feb 20 2022 14:57:12
%S 1,3,1,7,3,1,15,7,3,1,31,15,7,3,1,63,31,15,7,3,1,127,63,31,15,7,3,1,
%T 255,127,63,31,15,7,3,1,511,255,127,63,31,15,7,3,1,1023,511,255,127,
%U 63,31,15,7,3,1,2047,1023,511,255,127,63,31,15,7,3,1
%N Triangle read by rows, the matrix product A130321 * A000012, both taken as infinite lower triangular matrices.
%C Row sums are A000295: (1, 4, 11, 26, 57, 120, 247, ...), the Eulerian numbers.
%C T(n,k) is the number of length n+1 binary words containing at least two 1's such that the first 1 is preceded by exactly (k-1) 0's. T(3,2) = 3 because we have: 0101, 0110, 0111. - _Geoffrey Critzer_, Dec 31 2013
%C Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
%C /I_k 0\
%C \ 0 M/
%C having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A110441. - _Peter Bala_, Jul 22 2014
%C From _Wolfdieter Lang_, Oct 28 2019:(Start)
%C This triangle gives the solution of the following problem. Iterate the function f(x) = (x - 1)/2 to obtain f^{[k]}(x) = (x - (2^(k+1) - 1))/2^(k+1), for k >= 0. Find the positive integer x values for which the iterations stay integer and reach 1. Only odd integers x qualify, and the answer is x = x(n) = 2*T(n, 0) = 2*(2^(n+1) - 1), with the iterations T(n,0), ..., T(n,n) = 1.
%C This iteration is motivated by a problem posed by Johann Peter Hebel (1760 - 1826) in "Zweites Rechnungsexempel" from 1804, with the solution x = 31 corresponding to row n = 3 [15 7 3 1]. The egg selling woman started with 31 = T(4, 0) eggs and after four customers obtained, one after the other, always a number of eggs which was one half of the woman's remaining number of eggs plus 1/2 (selling only whole eggs, of course) she had one egg left. See the link and reference. [For Hebel's first problem see a comment in A000225.]
%C (End)
%D Johann Peter Hebel, Gesammelte Werke in sechs Bänden, Herausgeber: Jan Knopf, Franz Littmann und Hansgeorg Schmidt-Bergmann unter Mitarbeit von Ester Stern, Wallstein Verlag, 2019. Band 3, S. 36-37, Solution, S. 40-41. See also the link below.
%H Reinhard Zumkeller, <a href="/A130330/b130330.txt">Table of n, a(n) for n = 0..11324</a> [first 150 rows; offset shifted by _Georg Fischer_, Oct 29 2019]
%H Johann Peter Hebel, <a href="https://gutenberg.spiegel.de/buch/schatzkastlein-des-rheinischen-hausfreundes-8818/15">Zweites Rechnungsexempel.</a>, 1804; Solution: <a href="https://gutenberg.spiegel.de/buch/schatzkastlein-des-rheinischen-hausfreundes-8818/17">Auflösung des zweiten Rechnungsexempels. </a>, 1805.
%F A130321 * A000012 as infinite lower triangular matrices, where A130321 = (1; 2,1; 4,2,1; ...) and A000012 = (1; 1,1; 1,1,1; ...).
%F In every column k with offset n = k: 2^(m+1) - 1 = A000225(m+1) = (1, 3, 7, 15, ...), for m >= 0.
%F G.f.: 1/((1-y*x)*(1-x)*(1-2x)). - _Geoffrey Critzer_, Dec 31 2013
%F T(n, k) = 2^((n - k) + 1) - 1, n >= 0, k = 0..n. - _Wolfdieter Lang_, Oct 28 2019
%e First few rows of the triangle T(n, k):
%e n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
%e 0: 1
%e 1: 3 1
%e 2: 7 3 1
%e 3 15 7 3 1
%e 4: 31 15 7 3 1
%e 5: 63 31 15 7 3 1
%e 6: 127 63 31 15 7 3 1
%e 7: 255 127 63 31 15 7 3 1
%e 8: 511 255 127 63 31 15 7 3 1
%e 9: 1023 511 255 127 63 31 15 7 3 1
%e 10: 2047 1023 511 255 127 63 31 15 7 3 1
%e 11: 4095 2047 1023 511 255 127 63 31 15 7 3 1
%e 12: 8191 4095 2047 1023 511 255 127 63 31 15 7 3 1
%e ... reformatted and extended. - _Wolfdieter Lang_, Oct 28 2019
%t nn=12;a=1/(1- x);b=1/(1-2x);Map[Select[#,#>0&]&,Drop[CoefficientList[Series[a x^2 b/(1-y x),{x,0,nn}],{x,y}],2]]//Grid (* _Geoffrey Critzer_, Dec 31 2013 *)
%o (Haskell)
%o a130330 n k = a130330_row n !! (k-1)
%o a130330_row n = a130330_tabl !! (n-1)
%o a130330_tabl = iterate (\xs -> (2 * head xs + 1) : xs) [1]
%o -- _Reinhard Zumkeller_, Mar 31 2012
%Y Cf. A130321, A000012, A000225. A110441.
%K nonn,easy,tabl
%O 0,2
%A _Gary W. Adamson_, May 24 2007
%E More terms from _Geoffrey Critzer_, Dec 31 2013
%E Edited by _Wolfdieter Lang_, Oct 28 2019