Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 08 2022 08:45:30
%S 2,2,3,4,6,7,9,10,12,15,16,19,21,22,24,27,30,31,34,36,37,40,42,45,49,
%T 51,52,54,55,57,64,66,69,70,75,76,79,82,84,87,90,91,96,97,99,100,106,
%U 112,114,115,117,120,121,126,129,132,135,136,139,141,142,147,154,156,157
%N Number of quadratic residues (including 0) modulo the n-th prime.
%C The number of squares (quadratic residues including 0) modulo a prime p (sequence A096008 with every "1" prefixed by a "0") equals 1+floor(p/2), or ceiling(p/2) = (p+1)/2 if p is odd. (In fields of characteristic 2, all elements are squares.) See A130290(n)=A130291(n)-1 for number of nonzero residues. For all n>0, A130291(n+1) = A111333(n+1) = A006254(n) = A005097(n)-1 = A102781(n+1)-1 = A102781(n+1)-1 = A130290(n+1)-1.
%H Vincenzo Librandi, <a href="/A130291/b130291.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuadraticResidue.html">Quadratic Residue</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Quadratic_residue">Quadratic Residue</a>
%F a(n) = floor( A000040(n)/2 )+1
%e a(1)=2 since both elements of Z/2Z are squares.
%e a(3)=0 since 0=0^2, 1=1^2=(-1)^2 and 4=2^2=(-2)^2 are squares in Z/5Z.
%e a(1000000) = 7742932 = (p[1000000]+1)/2.
%t Quotient[Prime[Range[200]], 2] + 1 (* _Vincenzo Librandi_, Jan 16 2013 *)
%o (PARI) A130291(n) = 1+prime(n)>>1
%o (Magma) [Floor((NthPrime(n))/2)+1: n in [1..60]]; // _Vincenzo Librandi_, Jan 16 2013
%Y Essentially the same as A006254.
%Y Cf. A005097 (Odd primes - 1)/2, A102781 (Integer part of n#/(n-2)#/2#), A102781 (Number of even numbers less than the n-th prime), A063987 (quadratic residues modulo the n-th prime), A006254 (Numbers n such that 2n-1 is prime), A111333 (Number of odd numbers <= n-th prime), A000040 (prime numbers), A130290 (number of nonzero residues modulo primes).
%K easy,nonn
%O 1,1
%A _M. F. Hasler_, May 21 2007