login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonzero quadratic residues modulo the n-th prime.
19

%I #49 Jan 21 2023 15:08:33

%S 1,1,2,3,5,6,8,9,11,14,15,18,20,21,23,26,29,30,33,35,36,39,41,44,48,

%T 50,51,53,54,56,63,65,68,69,74,75,78,81,83,86,89,90,95,96,98,99,105,

%U 111,113,114,116,119,120,125,128,131,134,135,138,140,141,146,153,155,156,158

%N Number of nonzero quadratic residues modulo the n-th prime.

%C Row lengths for formatting A063987 as a table: The number of nonzero quadratic residues modulo a prime p equals floor(p/2), or (p-1)/2 if p is odd. The number of squares including 0 is (p+1)/2, if p is odd (rows prime(i) of A096008 formatted as a table). In fields of characteristic 2, all elements are squares. For any m > 0, floor(m/2) is the number of even positive integers less than or equal to m, so a(n) also equals the number of even positive integers less than or equal to the n-th prime. For all n > 0, A130290(n+1) = A005097(n) = A102781(n+1) = A102781(n+1) = A130291(n+1)-1 = A111333(n+1)-1 = A006254(n)-1.

%C From _Vladimir Shevelev_, Jun 18 2016: (Start)

%C a(1)+2 and, for n >= 2, a(n)+1 is the smallest k such that there exists 0 < k_1 < k with the condition k_1^2 == k^2 (mod prime(n)).

%C Indeed, for n >= 2, if prime(n) = 4*t+1 then k = 2*t+1 = a(n)+1, since (2*t+1)^2 == (2*t)^2 (mod prime(n)) and there cannot be a smaller value of k; if prime(n) = 4*t-1, then k = 2*t = a(n)+1, since (2*t)^2 == (2*t-1)^2 (mod prime(n)). (End)

%C a(n) is the number of pairs (a,b) such that a + b = prime(n) with 1 <= a <= b. - _Nicholas Leonard_, Oct 02 2022

%H Vincenzo Librandi, <a href="/A130290/b130290.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuadraticResidue.html">Quadratic Residue</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Quadratic_residue">Quadratic Residue</a>

%F a(n) = floor( A000040(n)/2 ) = #{ even positive integers <= A000040(n) }

%F a(n) = A055034(A000040(n)), n>=1. - _Wolfdieter Lang_, Sep 20 2012

%F a(n) = A005097(n-[n>1]) = A005097(max(n-1,1)). - _M. F. Hasler_, Dec 13 2019

%e a(1)=1 since the only nonzero element of Z/2Z equals its square.

%e a(3)=2 since 1=1^2=(-1)^2 and 4=2^2=(-2)^2 are the only nonzero squares in Z/5Z.

%e a(1000000) = 7742931 = (prime(1000000)-1)/2.

%p A130290 := proc(n): if n =1 then 1 else (A000040(n)-1)/2 fi: end: A000040 := proc(n): ithprime(n) end: seq(A130290(n), n=1..55); # _Johannes W. Meijer_, Oct 25 2012

%t Quotient[Prime[Range[66]], 2] (* _Vladimir Joseph Stephan Orlovsky_, Sep 20 2008 *)

%o (PARI) A130290(n) = prime(n)>>1

%o (Magma) [Floor((NthPrime(n))/2): n in [1..60]]; // _Vincenzo Librandi_, Jan 16 2013

%o (Python)

%o from sympy import prime

%o def A130290(n): return prime(n)//2 # _Chai Wah Wu_, Jun 04 2022

%Y Essentially the same as A005097.

%Y Cf. A102781 (Number of even numbers less than the n-th prime), A063987 (quadratic residues modulo the n-th prime), A006254 (Numbers n such that 2n-1 is prime), A111333 (Number of odd numbers <= n-th prime), A000040 (prime numbers), A130291.

%Y Appears in A217983. - _Johannes W. Meijer_, Oct 25 2012

%K easy,nonn

%O 1,3

%A _M. F. Hasler_, May 21 2007