login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A130250.
9

%I #14 Mar 18 2023 19:12:12

%S 0,1,4,7,11,15,20,25,30,35,40,45,51,57,63,69,75,81,87,93,99,105,112,

%T 119,126,133,140,147,154,161,168,175,182,189,196,203,210,217,224,231,

%U 238,245,252,259,267,275,283,291,299,307,315,323,331,339,347,355,363,371

%N Partial sums of A130250.

%C If the initial zero is omitted, partial sums of A130253.

%H G. C. Greubel, <a href="/A130252/b130252.txt">Table of n, a(n) for n = 0..5000</a>

%F a(n) = Sum_{k=0..n} A130250(k).

%F a(n) = n*ceiling(log_2(3n-1)) - (1/2)*( A001045(ceiling(log_2(3n-1)) +1) - 1 ).

%F G.f.: (1/(1-x)^2)*Sum_{k>=0} x^A001045(k).

%t A001045[n_]:= (2^n - (-1)^n)/3;

%t A130252[n_]:= If[n==0, 0, (2*n*Ceiling[Log[2,3*n-1]] - A001045[Ceiling[Log[2,3*n-1]]+1] +1)/2];

%t Table[A130252[n], {n,0,70}] (* _G. C. Greubel_, Mar 18 2023 *)

%o (Magma)

%o A001045:= func< n | (2^n - (-1)^n)/3 >;

%o A130252:= func< n | n eq 0 select 0 else (2*n*Ceiling(Log(2, 3*n-1)) - A001045(Ceiling(Log(2,3*n-1)) +1) +1)/2 >;

%o [A130252(n): n in [0..70]]; // _G. C. Greubel_, Mar 18 2023

%o (SageMath)

%o def A001045(n): return (2^n - (-1)^n)/3

%o def A130252(n): return 0 if (n==0) else (2*n*ceil(log(3*n-1,2)) - A001045(ceil(log(3*n-1,2)) +1) +1)/2

%o [A130252(n) for n in range(71)] # _G. C. Greubel_, Mar 18 2023

%Y Cf. A130249, A130251, A130253, A130252, A130234, A130236, A130242, A130244.

%Y Cf. A001045, A105348.

%K nonn

%O 0,3

%A _Hieronymus Fischer_, May 20 2007