login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of the 'lower' Lucas Inverse A130241.
11

%I #6 Sep 08 2022 08:45:30

%S 1,2,4,7,10,13,17,21,25,29,34,39,44,49,54,59,64,70,76,82,88,94,100,

%T 106,112,118,124,130,137,144,151,158,165,172,179,186,193,200,207,214,

%U 221,228,235,242,249,256,264,272,280,288,296,304,312,320,328,336,344,352

%N Partial sums of the 'lower' Lucas Inverse A130241.

%H G. C. Greubel, <a href="/A130243/b130243.txt">Table of n, a(n) for n = 1..2500</a>

%F a(n) = Sum_{k=1..n} A130241(k).

%F a(n) = (n+1)*A130241(n) - A000032(A130241(n)+2) + 3.

%F G.f.: g(x) = 1/(1-x)^2*Sum_{k>=1} x^Lucas(k).

%t Table[1 + Sum[Floor[Log[GoldenRatio, k + 1/2]], {k, 1, n}], {n, 1, 50}] (* _G. C. Greubel_, Sep 13 2018 *)

%o (PARI) for(n=1,50, print1(1 + sum(k=1,n,floor(log(k+1/2)/log((1+sqrt(5))/2))), ", ")) \\ _G. C. Greubel_, Sep 13 2018

%o (Magma) [1 + (&+[Floor(Log(k+1/2)/Log((1+Sqrt(5))/2)): k in [1..n]]): n in [1..50]]; // _G. C. Greubel_, Sep 13 2018

%Y Other related sequences: A000032, A130244, A130242, A130245, A130246, A130248, A130251, A130257, A130261. Fibonacci inverse see A130233 - A130240, A104162.

%K nonn

%O 1,2

%A _Hieronymus Fischer_, May 19 2007