login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130097
Primes prime(n) such that at least one of the two numbers (prime(n+2)^2-prime(n)^2)/2 - 1 and (prime(n+2)^2-prime(n)^2)/2 + 1 is not prime.
1
3, 5, 11, 13, 17, 23, 29, 31, 41, 43, 47, 53, 59, 73, 79, 83, 89, 101, 103, 109, 113, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337
OFFSET
1,1
EXAMPLE
a(1)=3 because (7^2 - 3^2)/2 - 1 = 19 and (7^2 - 3^2)/2 + 1 = 21 (21 is not prime),
a(2)=5 because (11^2 - 5^2)/2 - 1 = 47 and (11^2 - 5^2)/2 + 1 = 49 (49 is not prime),
a(3)=11 because (17^2 - 11^2)/2 - 1 = 83 and (17^2 - 11^2)/2 + 1 = 85 (85 is not prime), ...
MAPLE
ts_p2_20:=proc(n) local a, b, i, ans; ans := [ ]: for i from 2 to n do a := (ithprime(i+2)^(2)-ithprime(i)^(2))/2-1: b := (ithprime(i+2)^(2)-ithprime(i)^(2))/2+1: if not (isprime(a)=true and isprime(b)=true) then ans := [ op(ans), ithprime(i) ]: fi od; RETURN(ans) end: ts_p2_20(300);
CROSSREFS
Cf. A130761.
Sequence in context: A045404 A154500 A152460 * A020612 A072539 A062391
KEYWORD
nonn
AUTHOR
Jani Melik, Aug 01 2007
STATUS
approved