login
a(n) = numerator of Product_{k=1..n} k^mu(k), where mu(k) = A008683(k).
5

%I #12 Sep 21 2017 04:23:10

%S 1,1,1,1,1,1,1,1,1,2,2,2,2,4,60,60,60,60,60,60,1260,2520,2520,2520,

%T 2520,5040,5040,5040,5040,168,168,168,5544,11088,388080,388080,388080,

%U 776160,30270240,30270240,30270240,720720,720720,720720,720720,1441440,1441440

%N a(n) = numerator of Product_{k=1..n} k^mu(k), where mu(k) = A008683(k).

%H Michael De Vlieger, <a href="/A130086/b130086.txt">Table of n, a(n) for n = 1..4608</a>

%p with(numtheory): a:=n->numer(product(k^mobius(k),k=1..n)): seq(a(n),n=1..54); # _Emeric Deutsch_, May 11 2007

%t With[{s = Array[#^MoebiusMu@ # &, 47]}, Numerator@ Table[Times @@ Take[s, n], {n, Length@ s}]] (* _Michael De Vlieger_, Sep 20 2017 *)

%Y Cf. A130087, A130088, A130089.

%K frac,nonn

%O 1,10

%A _Leroy Quet_, May 06 2007

%E More terms from _Emeric Deutsch_, May 11 2007