OFFSET
1,2
FORMULA
a(1)=1, a(2)=2, b(1)=0, b(2)=3; for n>=3, let x=Floor(n/2) and y=n-x+1. Then a(n)=least positive integer not among a(1),a(2),...,a(n-1), b(1),b(2),...b(n-1) and b(n)=a(1)+a(2)+...+a(x) if n is even, b(n)=a(y)+a(y+1)+...+a(n) if n is odd.
EXAMPLE
(a(1),a(2),...,a(6))=(1,2,4,5,8,9), so x=4 and b(6)=1+2+4+5=12.
(a(1),a(2),...,a(7))=(1,2,4,5,8,9,10), so y=4 and b(7)=5+8+9+10=32.
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 03 2007
STATUS
approved