%I #22 Oct 10 2022 07:56:55
%S 2,17,102,112,316,447,535,820,1396,1475,1650,5575,6486,6832
%N Numbers m such that A119029(m) = numerator(Sum_{k=1..m} m^(k-1)/k!) is prime.
%C For n >= 1, the corresponding primes are A119029(a(n)) = {2, 1676770323947695709, ...}.
%C a(15) > 10000. - _Lucas A. Brown_, Apr 01 2021
%H Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A129977.py">A129977.py</a>
%t Do[ f=Numerator[ Sum[ n^(k-1)/k!, {k, 1, n} ] ]; If[ PrimeQ[f], Print[{n,f}] ], {n,1,316} ]
%t Select[Range[2000],PrimeQ[Numerator[Sum[#^(k-1)/k!,{k,#}]]]&] (* _Harvey P. Dale_, Jun 15 2019 *)
%o (PARI) for( n=1,1000, if( ispseudoprime( numerator( sum( k=1,n,n^(k-1)/k!))), print1(n", "))) \\ _M. F. Hasler_, Jun 18 2007
%Y Cf. A119029, A120266, A120267.
%K more,nonn
%O 1,1
%A _Alexander Adamchuk_, Jun 13 2007
%E Edited and extended (a(6)..a(8)) by _M. F. Hasler_, Jun 18 2007
%E More terms from _Ryan Propper_, Jan 12 2008
%E Various sections edited by _Petros Hadjicostas_, May 12 2020
%E a(12)-a(14) from _Lucas A. Brown_, Apr 01 2021