%I #11 Aug 18 2015 00:38:25
%S 23,103,271,271,557,3209,2411,6229,2633,401,2251,28163,19219,13297,
%T 3121,46663,17749,2339,41389,25037,121259,261031,6491,19489,41507,
%U 192917,163171,6211,4177,440549,59863,247279,120233,21893,102829,435041,13523
%N Smallest prime of the form k*prime(n+1)+prime(n) = j*prime(n+2)+prime(n+1) for free integer multipliers k and j.
%C A prime (like 271) occurring more than once ought be rare. It requires four primes to be linked by two congruences. The sequence of the 2nd smallest primes of the form is 53, 173, 733, 557, 2767, 5147, 4159, 12899, 6229, ... The list of 3rd smallest primes is 83, 313, 887, 1129, 3209, 8377, 6781, 16901, ... - _R. J. Mathar_, Sep 02 2007
%H Donovan Johnson, <a href="/A129918/b129918.txt">Table of n, a(n) for n = 1..1000</a>
%e For n = 3, prime(3,4,5) = (5,7,11), we have 38*7+5 = 24*11+7 = 271, a prime, with (k,j) = (38,24).
%p A129918 := proc(n) local p,q,r,m ; p := ithprime(n) ; q := nextprime(p) ; r := nextprime(q) ; m := chrem([p,q],[q,r]) ; while not isprime(m) do m := m+ r*q ; od ; RETURN(m) ; end: seq(A129918(n),n=1..40) ; # _R. J. Mathar_, Sep 02 2007
%Y Somewhat related to A072999.
%K nonn
%O 1,1
%A _J. M. Bergot_, Jun 05 2007
%E Edited by _R. J. Mathar_, Sep 02 2007