Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Oct 29 2024 15:40:39
%S 3,5,6,7,10,12,14,20,24,27,28,39,40,41,45,48,51,54,56,63,65,75,78,80,
%T 82,85,90,91,96,102,105,108,112,119,125,126,130,147,150,156,160,164,
%U 170,175,180,182,192,204,210,216,224,238,243,245,250,252,260,291,294,300
%N Possible bases for Pepin's primality test for Fermat numbers.
%C Prime elements of this sequence are given by A102742.
%C From _Jianing Song_, May 15 2024: (Start)
%C Let m be an odd number and ord(2,m) = 2^r*d be the multiplicative order of 2 modulo m, where d is odd, then 2^2^n + 1 is congruent to one of 2^2^r + 1, 2^2^(r+1) + 1, ..., 2^2^(r+ord(2,d)-1) + 1 modulo m, so it suffices to check these ord(2,d) numbers.
%C Note that if m > 1, then m does not divide 2^2^n + 1 for n >= r, otherwise we would have 2^(2^n*d) = (2^ord(2,m))^2^(n-r) == 1 (mod m) and 2^(2^n*d) = (2^2^n)^d == (-1)^d == -1 (mod m). As a result, m is a term if and only if the Jacobi symbol ((2^2^n + 1)/m) is equal to -1 for m = r, r+1, ..., r+ord(2,d)-1.
%C By definition, a squarefree number that is a product of elite primes (A102742) or anti-elite primes (A128852) is a term if and only if its number of elite factors is odd. But a squarefree term can have factors that are neither elite nor anti-elite, the smallest being 551 = 19*29. (End)
%H Arkadiusz Wesolowski, <a href="/A129802/b129802.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PepinsTest.html">Pepin's Test</a>.
%F A positive integer 2^k*m, where m is odd and k >= 0, belongs to this sequence iff the Jacobi symbol (F_n/m) = 1 for only a finite number of Fermat numbers F_n = A000215(n).
%e For n >= 2, we have 2^2^n + 1 == 170, 461, 17, 257, 519, 539 (mod 551) respectively for n == 0, 1, 2, 3, 4, 5 (mod 6). As we have (170/551) = (461/551) = (17/551) = (257/551) = (519/551) = (539/551) = -1, 551 is a term. - _Jianing Song_, May 19 2024
%o (PARI) { isPepin(n) = local(s,S=Set(),t); n\=2^valuation(n,2); s=Mod(3,n); while( !setsearch(S,s), S=setunion(S,[s]); s=(s-1)^2+1); t=s; until( t==s, if( kronecker(lift(t),n)==1, return(0)); t=(t-1)^2+1);1 }
%o for(n=2,1000,if(isPepin(n),print1(n,", ")))
%o (PARI) for(b=2, 300, k=b/2^valuation(b, 2); if(k>1, i=logint(k, 2); m=Mod(2, k); z=znorder(m); e=znorder(Mod(2, z/2^valuation(z, 2))); t=0; for(c=1, e, if(kronecker(lift(m^2^(i+c))+1, k)==-1, t++, break)); if(t==e, print1(b, ", ")))); \\ _Arkadiusz Wesolowski_, Sep 22 2021
%o (PARI) isA129802(n) = n = (n >> valuation(n,2)); my(d = znorder(Mod(2, n)), StartPoint = valuation(d, 2), LengthTest = znorder(Mod(2, d >> StartPoint))); for(i = StartPoint, StartPoint + LengthTest - 1, if(kronecker(lift(Mod(2, n)^2^i + 1), n) == 1, return(0))); 1 \\ _Jianing Song_, May 19 2024
%Y Cf. A000215, A019434, A060377, A102742, A128852, A372894.
%K nonn
%O 1,1
%A _Max Alekseyev_, Jun 14 2007, corrected Dec 29 2007. Thanks to _Ant King_ for pointing out an error in the earlier version of this sequence.