login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129769
Exponents m(i) for exceptional groups with best guesses for E7 1/2 and E9 added (there is a problem with the dimension of E9 as no sum of odd numbers will equal the 484, I get 483): triangular sequence is: A1,G2,F4,E6,E7 E7 1/2,E8,E9.
0
1, 1, 5, 1, 5, 7, 11, 1, 4, 5, 7, 8, 11, 1, 5, 7, 9, 11, 13, 17, 1, 6, 9, 11, 13, 15, 17, 19, 1, 7, 11, 13, 17, 19, 23, 29, 1, 11, 17, 19, 23, 29, 31, 51, 55
OFFSET
1,3
COMMENTS
Betti number row sums: Table[Apply[Plus, CoefficientList[Expand[Product[(1 + t^(2*a[i][[n]] + 1)), {n, 1, Length[a[i]]}]], t]], {i, 0, 7}] {2, 4, 16, 64, 128, 256, 256, 512} Group dimensions sums: b[n_] = 2*a[n] + 1 Table[Apply[Plus, b[n]], {n, 0, 7}] {3, 14, 52, 78, 133, 190, 248, 483}.
From these exponents it is possible to get Poincaré polynomial estimates for the new E7 1/2 and E8 that best fit the pattern of the known exponents.
REFERENCES
J. M. Landsberg, The sextonions and E_{7 1/2} (with L.Manivel) (Advances in Math 201(2006) p143 - 179) page 22; J. M. Landsberg, http://www.math.tamu.edu/~jml/LMsexpub.pdf: The sextonions and E_{7 1/2}
Armand Borel's Essays in History of Lie Groups and Algebraic Groups: gives G2 Poincaré polynomial, History of Mathematics, V. 21; http://www.amazon.com/Essays-History-Groups-Algebraic-Mathematics/dp/0821802887/ref=pd_rhf_p_3/104-0029617-0633535
FORMULA
a(0) = {1}; a(1) = {1, 5}; a(2) = {1, 5, 7, 11}; a(3) = {1, 4, 5, 7, 8, 11}; a(4) = {1, 5, 7, 9, 11, 13, 17}; a(5) = {1, 6, 9, 11, 13, 15, 17, 19}; a(6) = {1, 7, 11, 13, 17, 19, 23, 29}; a(7) = {1, 11, 17, 19, 23, 29, 31, 51, 55};
MATHEMATICA
a[0] = {1}; a[1] = {1, 5}; a[2] = {1, 5, 7, 11}; a[3] = {1, 4, 5, 7, 8, 11}; a[4] = {1, 5, 7, 9, 11, 13, 17}; a[5] = {1, 6, 9, 11, 13, 15, 17, 19}; a[6] = {1, 7, 11, 13, 17, 19, 23, 29}; a[7] = {1, 11, 17, 19, 23, 29, 31, 51, 55};
CROSSREFS
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, May 16 2007
STATUS
approved