%I #46 Sep 20 2024 21:06:53
%S 7,37,14197,17050729021,332306984815842876487217260305275077
%N Primes of the form 4^k - 3^k.
%H Muniru A Asiru, <a href="/A129736/b129736.txt">Table of n, a(n) for n = 1..13</a>
%H Bogley, William A.; Williams, <a href="https://doi.org/10.1007/s00209-016-1664-3">Gerald Efficient finite groups arising in the study of relative asphericity</a>. Math. Z. 284, No. 1-2, 507-535 (2016).
%H G. Everest et al., <a href="http://www.jstor.org/stable/27642221">Primes generated by recurrence sequences</a>, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
%H K. Zsigmondy, <a href="https://doi.org/10.1007%2FBF01692444">Zur Theorie der Potenzreste</a>, Monatsh. Math., 3 (1892), 265-284.
%F a(n) = A005061(A059801(n)). - _Michel Marcus_, Feb 12 2018
%p select(isprime, [seq(4^n - 3^n, n=0..100)]); # _Muniru A Asiru_, Feb 09 2018
%t fQ[n_] := If[PrimeQ[4^n - 3^n], 4^n - 3^n, Nothing]; Array[fQ, 300] (* _Robert G. Wilson v_, Feb 12 2018 *)
%o (Magma) [a: n in [0..300] | IsPrime(a) where a is 4^n-3^n]; // _Vincenzo Librandi_, Nov 23 2010
%o (GAP) Filtered(List([1..100], n -> 4^n-3^n), IsPrime); # _Muniru A Asiru_, Feb 09 2018
%o (PARI) lista(nn) = for(k=1, nn, if(isprime(p=4^k-3^k), print1(p", "))) \\ _Altug Alkan_, Mar 03 2018
%Y Cf. A005061, A059801, A129733, A129737.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, May 13 2007