%I #4 Jul 11 2015 16:50:04
%S 1,1,1,5,1,1,1,1,-3,1,1,-3,-7,-3,1,1,-3,1,1,1,1,4,1,1,3,0,3,1,1,4,0,
%T -7,0,4,1,1,3,0,3,1,1,4,1,1
%N Pyramid P(h,x,y)=P(h,x,y-1)+P(h,x,y+1)+P(h,x-1,y)+P(h,x+1,y)+P(h-1,x,y), read level by level, x by x.
%C All face elements=1. For an element x on a level inside the pyramid
%C ..b
%C .cxd
%C ..e
%C with a above x, x=a+b+c+d+e. Every level of the pyramid is symmetric. Thus the top (h=0) of the pyramid is 1. The level h=1 is
%C ..1
%C .1.5.1
%C ..1
%C The level h=2 is
%C .....1
%C ..1.-3..1
%C 1.-3.-7.-3..1
%C ..1.-3..1
%C .....1
%C The level h=3 is
%C ........1
%C .....1..4..1
%C ..1..3..0..3..1
%C 1..4..0.-7..0..4..1
%C ..1..3..0..3..1
%C .....1..4..1
%C ........1
%Y This is a three-dimensional analog of A129392.
%Y Cf. A129392, A129399.
%K sign
%O 0,4
%A _Jonas Wallgren_, Apr 13 2007