login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, read by rows, where T(n,k) is the coefficient of q^(nk-k) in the squared q-factorial of n.
3

%I #15 Feb 28 2023 07:44:09

%S 1,1,1,1,2,1,1,8,8,1,1,42,106,42,1,1,241,1558,1558,241,1,1,1444,23589,

%T 53612,23589,1444,1,1,8867,360499,1747433,1747433,360499,8867,1,1,

%U 55320,5530445,54794622,111482424,54794622,5530445,55320,1

%N Triangle, read by rows, where T(n,k) is the coefficient of q^(nk-k) in the squared q-factorial of n.

%C Dual triangle is A129274.

%C Central terms form a bisection of A127728.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/q-Factorial.html">q-Factorial</a>.

%F T(n,k) = [q^(nk-k)] Product_{i=1..n} { (1-q^i)/(1-q) }^2 for n>0, with T(0,0)=1.

%F Row sums = (n!)^2/(n-1) for n>=2.

%e Definition of q-factorial of n:

%e faq(n,q) = Product_{k=1..n} (1-q^k)/(1-q) for n>0, with faq(0,q)=1.

%e Obtain row 4 from coefficients in the squared q-factorial of 4:

%e faq(4,q)^2 = 1*(1 + q)^2*(1 + q + q^2)^2*(1 + q + q^2 + q^3)^2

%e = (1 + 3*q + 5*q^2 + 6*q^3 + 5*q^4 + 3*q^5 + q^6)^2;

%e the resulting coefficients of q are:

%e [(1), 6, 19, (42), 71, 96, (106), 96, 71, (42), 19, 6, (1)],

%e where the terms enclosed in parenthesis form row 4.

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 8, 8, 1;

%e 1, 42, 106, 42, 1;

%e 1, 241, 1558, 1558, 241, 1;

%e 1, 1444, 23589, 53612, 23589, 1444, 1;

%e 1, 8867, 360499, 1747433, 1747433, 360499, 8867, 1;

%e 1, 55320, 5530445, 54794622, 111482424, 54794622, 5530445, 55320, 1; ...

%t faq[n_, q_] := Product[(1-q^k)/(1-q), {k, 1, n}]; t[0, 0] = t[1, 0] = t[1, 1] = 1; t[n_, k_] := SeriesCoefficient[faq[n, q]^2, {q, 0, (n-1)*k}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 26 2013 *)

%o (PARI) T(n,k)=if(n==0,1,polcoeff(prod(i=1,n,(1-x^i)/(1-x))^2,(n-1)*k))

%Y Cf. A129277 (column 1), A129278 (column 2); A127728 (central terms), related triangles: A129274, A128564, A008302 (Mahonian numbers).

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Apr 07 2007