Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Feb 21 2024 22:48:49
%S 1,1,1,4,31,347,4956,85102,1698712,38562309,980107840,27559801736,
%T 849285938304,28459975589311,1030366840792576,40079074477640850,
%U 1666985134587145216,73827334760713500233,3468746291121007607808,172335499299097826575564,9027150377126199463936000
%N Number of labeled n-node connected graphs with at most one cycle.
%C The majority of those graphs of order 4 are trees since we have 16 trees and only 9 unicycles. See example.
%C Also connected graphs covering n vertices with at most n edges. The unlabeled version is A005703. - _Gus Wiseman_, Feb 19 2024
%D J. Riordan, An Introduction to Combinatorial Analysis, Dover, 2002, p. 2.
%H Andrew Howroyd, <a href="/A129271/b129271.txt">Table of n, a(n) for n = 0..100</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pseudoforest">PseudoForest</a>.
%F a(0) = 1, for n >=1, a(n) = A000272(n) + A057500(n) = n^{n-2} + (n-1)(n-2)/2Sum_{r=1..n-2}( (n-3)!/(n-2-r)! )n^(n-2-r)
%F E.g.f.: log(1/(1-T(x)))/2 + T(x)/2 - 3*T(x)^2/4 + 1, where T(x) is the e.g.f. for A000169. - _Geoffrey Critzer_, Mar 23 2013
%F a(n) = ((n-1)*e^n*GAMMA(n-1,n)+n^(n-2)*(3-n))/2 for n>=1. - _Peter Luschny_, Jan 18 2016
%e a(4) = 16 + 3*3 = 31.
%e From _Gus Wiseman_, Feb 19 2024: (Start)
%e The a(0) = 1 through a(3) = 4 graph edge sets:
%e {} . {{1,2}} {{1,2},{1,3}}
%e {{1,2},{2,3}}
%e {{1,3},{2,3}}
%e {{1,2},{1,3},{2,3}}
%e (End)
%p a := n -> `if`(n=0,1,((n-1)*exp(n)*GAMMA(n-1,n)+n^(n-2)*(3-n))/2):
%p seq(simplify(a(n)),n=0..16); # _Peter Luschny_, Jan 18 2016
%t nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[ Log[1/(1-t)]/2+t/2-3t^2/4+1,{x,0,nn}],x] (* _Geoffrey Critzer_, Mar 23 2013 *)
%o (PARI) seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(log(1/(1-t))/2 + t/2 - 3*t^2/4 + 1))} \\ _Andrew Howroyd_, Nov 07 2019
%Y Cf. A129137, A000272.
%Y For any number of edges we have A001187, unlabeled A001349.
%Y The unlabeled version is A005703.
%Y The case of equality is A057500, covering A370317, cf. A370318.
%Y The non-connected non-covering version is A133686.
%Y The connected complement is A140638, unlabeled A140636, covering A367868.
%Y The non-connected covering version is A367869 or A369191.
%Y The version with loops is A369197, non-connected A369194.
%Y A006125 counts graphs, A000088 unlabeled.
%Y A006129 counts covering graphs, A002494 unlabeled.
%Y A062734 counts connected graphs by number of edges.
%Y Cf. A006649, A116508, A134964, A143543, A323818, A367862, A367863, A367867, A367916, A367917, A368951.
%K easy,nonn
%O 0,4
%A _Washington Bomfim_, May 10 2008
%E Terms a(17) and beyond from _Andrew Howroyd_, Nov 07 2019