login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Invert transform of the Bell numbers.
4

%I #47 Feb 15 2022 07:32:58

%S 1,1,3,10,36,138,560,2402,10898,52392,267394,1450790,8371220,51327178,

%T 333759746,2295276480,16639104002,126718172670,1010487248556,

%U 8411744415418,72899055533482,656136245454232,6120474697035762

%N Invert transform of the Bell numbers.

%C The following definition of the invert transform appears in [M. Bernstein & N. J. A. Sloane, Some canonical sequences of integers, Linear Algebra and its Applications, 226-228 (1995), 57-72]: "b_n is the number of ordered arrangements of postage stamps of total value n that can be formed if we have a_i types of stamps of value i, i >= 1."

%C Hankel transform is A000178. - _Paul Barry_, Jan 08 2009

%C Equals INVERT transform of the Bell sequence starting with offset 1: (1, 2, 5, ...), while A137551 = INVERT transform of the Bell sequence starting with offset 0: (1, 1, 2, 5, 15, 52, ...). - _Gary W. Adamson_, May 24 2009

%H Alois P. Heinz, <a href="/A129247/b129247.txt">Table of n, a(n) for n = 0..576</a>

%H M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.

%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

%H T. Mansour and M. Shattuck, <a href="https://doi.org/10.1007/s12044-014-0166-7">A statistic on n-color compositions and related sequences</a>, Proc. Indian Acad. Sci. (Math. Sci.) 124(2) (2014), pp. 127-140.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F a(n) = Sum_{i=1..n} Bell(i)*a(n-i).

%F G.f.: 1/(U(0) - 2*x) where U(k) = 1 - x*(k+1)/(1 - x/U(k+1)); (continued fraction, 2-step). - _Sergei N. Gladkovskii_, Nov 12 2012

%F G.f.: 1/( Q(0) - 2*x ) where Q(k) = 1 + x/(x*k - 1 )/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Feb 23 2013

%F G.f.: 1/(Q(0) - x), where Q(k) = 1 - x - x/(1 - x*(2*k+1)/(1 - x - x/(1 - 2*x*(k+1)/Q(k+1)))); (continued fraction). - _Sergei N. Gladkovskii_, May 12 2013

%e We have Bell(i) types of an integer i with i=1,2,...,n, where Bell(i) is the i-th Bell number.

%e We write i_j for integer i of type j.

%e a(2)=3 because of the 3 ordered arrangements

%e {1_1,1_1}

%e {2_1}, {2_2}.

%e a(3)=10 because of the 10 ordered arrangements

%e {1_1,1_1,1_1},

%e {1_1,2_1}, {2_1,1_1},

%e {1_1,2_2}, {2_2,1_1}

%e {3_1}, {3_2}, {3_3}, {3_4}, {3_5}.

%p A129247 := proc(n) option remember ; local i ; if n <= 1 then 1 ; else add(combinat[bell](i)*procname(n-i),i=1..n) ; fi ; end: for n from 0 to 40 do printf("%d,",A129247(n)) ; od: # _R. J. Mathar_, Aug 25 2008

%t a[0] = 1; a[n_] := a[n] = Sum[BellB[i]*a[n - i], {i, 1, n}];

%t Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Nov 09 2017 *)

%Y Cf. A000110, A055887, A083355.

%K nonn

%O 0,3

%A _Thomas Wieder_, May 10 2008

%E Extended by _R. J. Mathar_, Aug 25 2008

%E a(0)=1 prepended by _Alois P. Heinz_, Sep 22 2017