|
|
A129218
|
|
Permutations with exactly 10 fixed points.
|
|
10
|
|
|
1, 0, 66, 572, 9009, 132132, 2122120, 36056592, 649062414, 12332093488, 246642054516, 5179482792120, 113948622073286, 2620818306541512, 62899639358957544, 1572490983970669840, 40884765583242727575
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
10,3
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 10..200
|
|
FORMULA
|
E.g.f.: exp(-x)/(1-x)*(x^10/10!). [Zerinvary Lajos, Apr 03 2009]
O.g.f.: (1/10!)*Sum_{k>=10} k!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 15 2017
|
|
MAPLE
|
a:=n->sum(n!*sum((-1)^k/(k-9)!, j=0..n), k=9..n): seq(-a(n)/10!, n=9..27);
restart: G(x):=exp(-x)/(1-x)*(x^10/10!): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=10..26); # Zerinvary Lajos, Apr 03 2009
|
|
MATHEMATICA
|
With[{nn=40}, Drop[CoefficientList[Series[Exp[-x]/(1 - x) x^10/10!, {x, 0, nn}], x]Range[0, nn]!, 10]] (* Vincenzo Librandi, Feb 19 2014 *)
|
|
PROG
|
(PARI) x='x+O('x^66); Vec( serlaplace(exp(-x)/(1-x)*(x^9/9!)) ) \\ Joerg Arndt, Feb 19 2014
|
|
CROSSREFS
|
Cf. A008290, A000166, A000240, A000387, A000449, A000475, A129135, A129136, A129149, A129153, A129217, A129238, A129255, A008291, A170942.
Sequence in context: A202639 A175260 A233065 * A046409 A128952 A282050
Adjacent sequences: A129215 A129216 A129217 * A129219 A129220 A129221
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Zerinvary Lajos, May 25 2007
|
|
EXTENSIONS
|
Changed offset from 0 to 10 by Vincenzo Librandi, Feb 19 2014
Edited by Joerg Arndt, Feb 19 2014
|
|
STATUS
|
approved
|
|
|
|