login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^3 divides 4^(k^2) - 1.
16

%I #17 Jun 08 2021 02:23:42

%S 1,3,21,57,219,399,903,1533,2667,4161,7077,17157,18543,29127,32547,

%T 50673,65919,74109,96141,113799,114681,134463,194691,227829,304311,

%U 352317,383907,389193,463071,516621,672987,797349,863517,898779,932799,1252461,1353639

%N Numbers k such that k^3 divides 4^(k^2) - 1.

%C From _Robert Israel_, Aug 13 2020: (Start)

%C Except for 1, all terms are divisible by 3, but not 5 or 9.

%C All terms > 3 are divisible by at least one of 7, 19 and 73.

%C Are all terms squarefree? (End)

%H Robert Israel, <a href="/A129212/b129212.txt">Table of n, a(n) for n = 1..500</a> (first 49 terms from Robert Price)

%p filter:= n -> 4&^(n^2)-1 mod (n^3) = 0:

%p select(filter, [1,seq(i,i=3..10^6,6)]); # _Robert Israel_, Aug 13 2020

%t k=2; Do[ p=Prime[k]; If[ IntegerQ[ (PowerMod[ p+1, n^2, n^3 ] - 1 )/n^3 ], Print[ {k, p, n} ]], {n,1,200000} ]

%t k=2; Do[ p=Prime[k]; If[ IntegerQ[ (PowerMod[ p+1, n^2, n^3 ] - 1 )/n^3 ], Print[ {k, p, n} ]], {n,1000000} ] (* _Robert G. Wilson v_, Apr 06 2007 *)

%t Join[{1}, Select[Range[3000000], PowerMod[4, #^2, #^3] == 1 &]] (* _Robert Price_, Mar 31 2020 *)

%Y Cf. A014945 (numbers k such that k divides 4^k-1).

%Y Cf. A127104 (numbers k such that k^2 divides 4^k-1).

%Y Cf. A128678 (numbers k such that k^3 divides 4^(k^2)+1).

%K nonn

%O 1,2

%A _Alexander Adamchuk_, Apr 03 2007

%E More terms from _Robert G. Wilson v_, Apr 06 2007