Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Mar 18 2014 16:50:03
%S 245,333,330,462,539,647,888,1036,1177,1445,1722,1990,2311,2672,3047,
%T 3492,4093,4613,5138,5718,6379,7123,7952,8676,9537,10393,11558,12602,
%U 13743,14863,16252,17528,18957,20481,22042,23678,25347,27207,29092
%N Largest number not the sum of n distinct nonzero squares.
%C Halter-Koch essentially finds (5)-a(12) (with a coprimality condition, but Bateman, Hildebrand, & Purdy show that this can be dropped). - _Charles R Greathouse IV_, Mar 18 2014
%H T. D. Noe, <a href="/A129210/b129210.txt">Table of n, a(n) for n = 5..400</a> (from Bateman et al.)
%H Paul T. Bateman, Adolf J. Hildebrand, and George B. Purdy, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa67/aa6745.pdf">Sums of distinct squares</a>, Acta Arithmetica 67 (1994), pp. 349-380.
%H Franz Halter-Koch, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa42/aa4212.pdf">Darstellung natürlicher Zahlen als Summe von Quadraten</a>, Acta Arithmetica 42 (1982), pp. 11-20.
%Y Cf. A120951 (numbers that are not the sum of 5 distinct nonzero squares).
%K nonn
%O 5,1
%A _T. D. Noe_, Apr 03 2007