Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jul 26 2022 10:58:41
%S 1,0,1,5,19,73,292,1203,5065,21697,94274,414514,1840981,8247011,
%T 37220261,169079113,772489020,3547371679,16364309243,75799327800,
%U 352402156770,1643878188646,7691841654538,36091803172733
%N Number of skew Dyck paths of semilength n with no base pyramids.
%C A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. A pyramid in a skew Dyck word (path) is a factor of the form u^h d^h, h being the height of the pyramid. A base pyramid is a pyramid starting on the x-axis.
%H G. C. Greubel, <a href="/A129166/b129166.txt">Table of n, a(n) for n = 0..1000</a>
%H E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
%F a(n) = A129165(n,0).
%F G.f.: (1-z)*(3-3*z-sqrt(1-6*z+5*z^2))/(2-(1-z)*(1-z-sqrt(1-6*z+5*z^2))).
%F a(n) ~ 82*5^(n+1/2)/(289*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Mar 20 2014
%F D-finite with recurrence 6*(n+1)*a(n) +2*(-25*n+11)*a(n-1) +(131*n-229)*a(n-2) +2*(-92*n+261)*a(n-3) +2*(81*n-311)*a(n-4) +(-91*n+439)*a(n-5) +(31*n-183)*a(n-6) +5*(-n+7)*a(n-7)=0. - _R. J. Mathar_, Jul 26 2022
%e a(2)=1 because we have UUDL.
%p G:=(1-z)*(3-3*z-sqrt(1-6*z+5*z^2))/(2-(1-z)*(1-z-sqrt(1-6*z+5*z^2))): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..27);
%t CoefficientList[Series[(1-x)*(3-3*x-Sqrt[1-6*x+5*x^2])/(2-(1-x)*(1-x-Sqrt[1-6*x+5*x^2])), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%o (PARI) z='z+O('z^50); Vec((1-z)*(3-3*z-sqrt(1-6*z+5*z^2))/(2-(1-z)*(1-z-sqrt(1-6*z+5*z^2)))) \\ _G. C. Greubel_, Mar 20 2017
%Y Cf. A129165.
%K nonn
%O 0,4
%A _Emeric Deutsch_, Apr 04 2007