login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the semi-abscissae of the first returns to the axis over all skew Dyck paths of semilength n.
2

%I #25 Feb 11 2017 04:03:18

%S 1,4,18,82,378,1760,8262,39044,185526,885596,4243590,20400954,

%T 98353278,475322352,2302064010,11170370850,54293503770,264290420540,

%U 1288257980310,6287181414470,30717958762350,150234512678480,735446569221810,3603330368706640,17668505697688098,86698739895529300

%N Sum of the semi-abscissae of the first returns to the axis over all skew Dyck paths of semilength n.

%C A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps.

%H G. C. Greubel, <a href="/A129160/b129160.txt">Table of n, a(n) for n = 1..1000</a> (terms 1..200 from Vincenzo Librandi)

%H E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203

%F a(n) = Sum_{k=1,..,n} k*A129159(n,k).

%F a(n) = 2*A128752(n) for n>=2.

%F G.f.: x-1+(1-3*x+2*x^2)/sqrt(1-6*x+5*x^2).

%F Recurrence: n*(3*n-1)*a(n) = 18*(n-1)*n*a(n-1) - 5*(n-3)*(3*n+2)*a(n-2) . - _Vaclav Kotesovec_, Oct 20 2012

%F a(n) ~ 6*5^(n-3/2)/sqrt(Pi*n) . - _Vaclav Kotesovec_, Oct 20 2012

%e a(2)=4 because UDUD, UUDD and UUDL yield 1+2+1=4.

%p G:=z-1+(1-3*z+2*z^2)/sqrt(1-6*z+5*z^2): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=1..27);

%t CoefficientList[Series[(1/x) (x - 1 + (1 - 3*x + 2*x^2)/Sqrt[1 - 6*x + 5*x^2]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)

%o (PARI) x='x+O('x^25); Vec(x-1+(1-3*x+2*x^2)/sqrt(1-6*x+5*x^2)) \\ _G. C. Greubel_, Feb 09 2017

%Y Cf. A129159, A128752.

%K nonn

%O 1,2

%A _Emeric Deutsch_, Apr 03 2007

%E Mathematica code corrected by _Vincenzo Librandi_, May 24 2013