login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129148
Expansion of (1-x-sqrt(1-6*x-7*x^2))/(2*(1+2*x)).
1
1, 2, 8, 36, 180, 956, 5300, 30316, 177604, 1060284, 6427092, 39452364, 244748196, 1532044572, 9664688436, 61380865452, 392148430212, 2518518772604, 16250624534420, 105297028489612, 684865176181348
OFFSET
1,2
COMMENTS
Series reversion of x(1-x)/(1+x+2x^2).
Hankel transform is 4^C(n+1,2)=A053763(n+1).
LINKS
FORMULA
a(n)=sum{k=0..n, sum{j=0..n, C(n,j)*C(n-k,j+k-n)*C(n-k)*3^(j+k-n)}}, C(n)=A000108(n); a(n)=(1/(2*pi))*int(x^n*sqrt(7+6*x-x^2)/(2+x),x,-1,7);
D-finite with recurrence: n*a(n) = (4*n-9)*a(n-1) + (19*n-39)*a(n-2) + 14*(n-3)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 7^(n+1/2)/(9*sqrt(2*Pi)*n^(3/2)) . - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
Rest[CoefficientList[Series[(1-x-Sqrt[1-6*x-7*x^2])/(2*(1+2*x)), {x, 0, 20}], x]] (* Vaclav Kotesovec, Oct 20 2012 *)
Table[(1/(2*Pi))*Integrate[x^n*Sqrt[7+6*x-x^2]/(2+x), {x, -1, 7}], {n, 0, 10}] (* Vaclav Kotesovec, Oct 20 2012 *)
CROSSREFS
Sequence in context: A113327 A227791 A245102 * A285672 A081958 A369619
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 01 2007
EXTENSIONS
Offset corrected to 1, Vaclav Kotesovec, Oct 20 2012
STATUS
approved