login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numbers that are the sum of consecutive prime numbers with the final digit 1 (primes in A030430).
2

%I #7 Nov 15 2024 18:51:53

%S 11,83,1181,7937,9239,10631,12143,28429,66973,75307,79609,206593,

%T 311419,348487,397897,408169,518779,628877,654821,708119,735533,

%U 763457,867281,1030201,1519333,1581449,1623863,1688509,1732763,2012657,2037029

%N Prime numbers that are the sum of consecutive prime numbers with the final digit 1 (primes in A030430).

%C Primes in the partial sums of all primes, starting with 11, that have 1 as their final digit. - _Harvey P. Dale_, Nov 15 2024

%H Harvey P. Dale, <a href="/A129077/b129077.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n)=A030430(1)+A030430(2)+...+A030430(x); a is a prime number.

%e a(2)=83 because 83=A030430(1)+ A030430(2)+A030430(3)=11+31+41 and 83 is a prime number.

%e a(3)=1181 because 1181=A030430(1)+ A030430(2)+A030430(3)+A030430(4)+ A030430(5)+A030430(6)+A030430(7)+ A030430(8)+A030430(9)+A030430(10)+A030430(11)= 11+ 31+ 41+ 61+ 71+ 101+ 131+ 151+ 181+ 191+ 211; and 1181 is a prime number.

%t Select[Accumulate[Select[Prime[Range[2000]],Mod[#,10]==1&]],PrimeQ] (* _Harvey P. Dale_, Nov 15 2024 *)

%Y Cf. A030430; A000040.

%K easy,base,nonn

%O 1,1

%A _Tomas Xordan_, May 11 2007