login
A128884
Sum of all matrix elements of n X n Vandermonde matrix of numbers 1,2,...,n, i.e., the matrix A with A[i,j] = i^(j-1), 1 <= i <= n, 1 <= j <= n.
0
1, 5, 23, 144, 1279, 15035, 219463, 3816512, 76928685, 1762344781, 45207853767, 1283438430208, 39944988007339, 1352308628695895, 49471532968242991, 1944732944768690432, 81748776383970349721, 3659142661552743151353
OFFSET
1,2
COMMENTS
p divides a(p+1) for odd primes p.
p^2 divides a(p+1) for prime p = {3, 7, 71, ...}.
Determinant of n X n Vandermonde matrix of numbers 1,2,...,n equals Product_{k=1..n-1} k! = A000178(n-1) (Superfactorials).
LINKS
Eric Weisstein's World of Mathematics, Vandermonde Matrix
FORMULA
a(n) = Sum_{i=1..n, j=1..n} i^(j-1).
a(n) = n + Sum_{i=2..n} (i^n-1)/(i-1).
MATHEMATICA
Table[ n + Sum[ (i^n-1)/(i-1), {i, 2, n} ], {n, 1, 25} ]
CROSSREFS
Cf. A060946 = Trace of Vandermonde matrix of numbers 1, 2, ..., n.
Cf. A000178 = Superfactorials: product of first n factorials.
Sequence in context: A351817 A352146 A020034 * A356436 A007836 A233568
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Apr 18 2007
STATUS
approved