Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Oct 01 2013 21:35:21
%S 0,1,12,109,121,10999,11120,111079,122199,1088671,5565554,23350887,
%T 122319989,1001910799,1124230788,11119987891,112324109698,
%U 123444097589,1346765085588,5510504439941,23388782845352,28899287285293
%N Numerator of the continued fraction convergents of the decimal concatenation of the powers of 10.
%F The powers of 10 = 1,10,100,1000,10000,... are concatenated and then preceded by a decimal point to create the fraction N = .110100100010000... This number is then evaluated with n=0,m=steps to iterate,x = N, a(0)=floor(N) using the loop: do a(n)=floor(x) x=1/(x-a(n)) n=n+1 loop until n=m
%o (PARI) g(n) = f=".";for(x=0,n,a=concat(f,10^x));f=eval(f) { default(realprecision,1000); cf = vector(1000); cf = contfrac(f); for(m1=0,m-1, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n];); numer=numerator(r); denom=denominator(r); print1(numer","); numer2=numer;denom2=denom; ) }
%K frac,nonn,base
%O 0,3
%A _Cino Hilliard_, Apr 18 2007
%E Edited by _Charles R Greathouse IV_, Apr 25 2010