Anti-Elite Prime Search
Complete to 1E14
Dennis R. Martin
DP Technology Corp.,
dennis.martin@dptechnology.com
There are 100 anti-elite primes less than 5E12, two more between 5E12 and 1E13, and eleven between 1E13 and 1E14, for a total of 113 anti-elite primes less than 1E14. As of February 12, 2009, this search is complete up to 1E14.
A prime number p is elite if only finitely many Fermat numbers Fm = 2^(2m) + 1 are quadratic residues of p, while p is anti-elite if only finitely many Fermat numbers are quadratic non-residues of p. Both elite and anti-elite primes were searched for simultaneously in this study using a method based on articles by Chaumont and Müller [1] and Müller [2]. A detailed description is given under Elite and Anti-Elite Search Methodology.
In the table below the Exponent m is the smallest nonnegative integer such that Fm = 2^(2m)+1 rs (mod p), where s represents the start of the of the Fermat period (s S, with S being the latest possible Fermat period start derived from Aigner [4]). The length of the Fermat period L is the smallest positive integer such that Fm+L Fm rs (mod p), and the Jacobi Symbol (rk | Fn) applies to all n m and to all k s (specifically in the interval from s to s + L – 1, after which the residues repeat). Hence the prime p can only be a quadratic non-residue, with (rk | Fn) = -1, for a finite number of Fermat numbers, at most those with n < m.
# |
Anti-Elite |
First Repeating |
Exponent m |
Fermat L |
Jacobi (rk | Fn) |
p mod 240 |
1 |
2 |
1 |
0 |
1 |
1 |
2 |
2 |
13 |
4 |
2 |
2 |
1 |
13 |
3 |
17 |
2 |
3 |
1 |
1 |
17 |
4 |
97 |
62 |
4 |
2 |
1 |
97 |
5 |
193 |
109 |
5 |
2 |
1 |
193 |
6 |
241 |
16 |
3 |
2 |
1 |
1 |
7 |
257 |
2 |
4 |
1 |
1 |
17 |
8 |
641 |
2 |
6 |
1 |
1 |
161 |
9 |
673 |
256 |
4 |
2 |
1 |
193 |
10 |
769 |
361 |
7 |
2 |
1 |
49 |
11 |
2689 |
2382 |
5 |
3 |
1 |
49 |
12 |
5953 |
2810 |
5 |
5 |
1 |
193 |
13 |
8929 |
3034 |
4 |
5 |
1 |
49 |
14 |
12289 |
6049 |
11 |
2 |
1 |
49 |
15 |
40961 |
5115 |
11 |
4 |
1 |
161 |
16 |
49921 |
47279 |
7 |
4 |
1 |
1 |
17 |
61681 |
257 |
3 |
4 |
1 |
1 |
18 |
65537 |
2 |
5 |
1 |
1 |
17 |
19 |
101377 |
99619 |
9 |
6 |
1 |
97 |
20 |
114689 |
2 |
13 |
1 |
1 |
209 |
21 |
274177 |
2 |
7 |
1 |
1 |
97 |
22 |
286721 |
249403 |
7 |
4 |
1 |
161 |
23 |
319489 |
2 |
12 |
1 |
1 |
49 |
24 |
414721 |
116621 |
5 |
4 |
1 |
1 |
25 |
417793 |
321693 |
12 |
8 |
1 |
193 |
26 |
550801 |
17 |
2 |
8 |
1 |
1 |
27 |
786433 |
393985 |
17 |
2 |
1 |
193 |
28 |
974849 |
2 |
12 |
1 |
1 |
209 |
29 |
1130641 |
257 |
3 |
12 |
1 |
1 |
30 |
1376257 |
1285807 |
9 |
6 |
1 |
97 |
31 |
1489153 |
1190947 |
7 |
3 |
1 |
193 |
32 |
1810433 |
1613557 |
12 |
8 |
1 |
113 |
33 |
2424833 |
2 |
10 |
1 |
1 |
113 |
34 |
3602561 |
3296917 |
6 |
4 |
1 |
161 |
35 |
6700417 |
2 |
6 |
1 |
1 |
97 |
36 |
6942721 |
1973594 |
10 |
4 |
1 |
1 |
37 |
7340033 |
5435959 |
19 |
3 |
1 |
113 |
38 |
11304961 |
7745119 |
14 |
4 |
1 |
1 |
39 |
12380161 |
2544570 |
10 |
4 |
1 |
1 |
40 |
13631489 |
2 |
19 |
1 |
1 |
209 |
41 |
15790321 |
257 |
3 |
3 |
1 |
1 |
42 |
17047297 |
11264373 |
7 |
6 |
1 |
97 |
43 |
22253377 |
65536 |
5 |
2 |
1 |
97 |
44 |
26017793 |
2 |
13 |
1 |
1 |
113 |
45 |
39714817 |
9977849 |
14 |
2 |
1 |
97 |
46 |
45592577 |
2 |
11 |
1 |
1 |
17 |
47 |
63766529 |
2 |
13 |
1 |
1 |
209 |
48 |
67411969 |
26037099 |
12 |
12 |
1 |
49 |
49 |
89210881 |
54761830 |
12 |
6 |
1 |
1 |
50 |
93585409 |
32315515 |
17 |
6 |
1 |
49 |
51 |
113246209 |
35214048 |
20 |
6 |
1 |
49 |
52 |
119782433 |
65537 |
4 |
10 |
1 |
113 |
53 |
152371201 |
82851301 |
14 |
2 |
1 |
1 |
54 |
167772161 |
2 |
24 |
1 |
1 |
161 |
55 |
171048961 |
60067527 |
16 |
6 |
1 |
1 |
56 |
185602561 |
27136218 |
8 |
12 |
1 |
1 |
57 |
377487361 |
182575938 |
20 |
4 |
1 |
1 |
58 |
394783681 |
65537 |
4 |
4 |
1 |
1 |
59 |
597688321 |
242516737 |
20 |
2 |
1 |
1 |
60 |
618289153 |
351505261 |
10 |
12 |
1 |
193 |
61 |
663239809 |
208987074 |
6 |
6 |
1 |
49 |
62 |
825753601 |
2 |
17 |
1 |
1 |
1 |
63 |
902430721 |
366441810 |
15 |
4 |
1 |
1 |
64 |
1107296257 |
574691068 |
24 |
2 |
1 |
97 |
65 |
1214251009 |
2 |
16 |
1 |
1 |
49 |
66 |
2281701377 |
531923830 |
25 |
8 |
1 |
17 |
67 |
3221225473 |
1610563585 |
28 |
2 |
1 |
193 |
68 |
4278255361 |
65537 |
4 |
4 |
1 |
1 |
69 |
4562284561 |
257 |
3 |
4 |
1 |
1 |
70 |
5733744641 |
4554956764 |
14 |
4 |
1 |
161 |
71 |
6487031809 |
2 |
11 |
1 |
1 |
49 |
72 |
6511656961 |
1113753254 |
20 |
4 |
1 |
1 |
73 |
7348420609 |
4192688106 |
22 |
2 |
1 |
49 |
74 |
11560943617 |
2754162610 |
16 |
2 |
1 |
97 |
75 |
15600713729 |
13409578292 |
20 |
14 |
1 |
209 |
76 |
23447531521 |
21128413018 |
9 |
8 |
1 |
1 |
77 |
29796335617 |
22207075727 |
27 |
2 |
1 |
97 |
78 |
30450647041 |
29227412725 |
19 |
10 |
1 |
1 |
79 |
46908728641 |
65537 |
4 |
4 |
1 |
1 |
80 |
48919385089 |
21451561671 |
8 |
3 |
1 |
49 |
81 |
70525124609 |
2 |
20 |
1 |
1 |
209 |
82 |
74490839041 |
3563083128 |
26 |
2 |
1 |
1 |
83 |
77309411329 |
10049501084 |
29 |
2 |
1 |
49 |
84 |
83751862273 |
77436865084 |
29 |
12 |
1 |
193 |
85 |
96645260801 |
62551430004 |
7 |
4 |
1 |
161 |
86 |
107767726081 |
26457611963 |
15 |
3 |
1 |
1 |
87 |
137603804161 |
118753253404 |
6 |
4 |
1 |
1 |
88 |
190274191361 |
2 |
13 |
1 |
1 |
161 |
89 |
206158430209 |
103078821889 |
35 |
2 |
1 |
49 |
90 |
246423748609 |
200858196534 |
26 |
2 |
1 |
49 |
91 |
448203325441 |
444809836474 |
23 |
2 |
1 |
1 |
92 |
529566400513 |
32887465995 |
16 |
6 |
1 |
193 |
93 |
646730219521 |
2 |
20 |
1 |
1 |
1 |
94 |
1084521185281 |
680019429390 |
21 |
6 |
1 |
1 |
95 |
1753340313601 |
27210396312 |
16 |
4 |
1 |
1 |
96 |
2115221118977 |
773629242648 |
11 |
3 |
1 |
17 |
97 |
2422022479873 |
2175588931933 |
12 |
2 |
1 |
193 |
98 |
2710954639361 |
2 |
14 |
1 |
1 |
161 |
99 |
2748779069441 |
2 |
37 |
1 |
1 |
161 |
100 |
4485296422913 |
2 |
22 |
1 |
1 |
113 |
101 |
5469640851457 |
4236441622875 |
30 |
2 |
1 |
97 |
102 |
6597069766657 |
2 |
39 |
1 |
1 |
97 |
103 |
17317308137473 |
14222889442147 |
37 |
6 |
1 |
193 |
104 |
25409026523137 |
2 |
33 |
1 |
1 |
97 |
105 |
25991531462657 |
2 |
26 |
1 |
1 |
17 |
106 |
28114855919617 |
24856331238165 |
31 |
2 |
1 |
97 |
107 |
31065037602817 |
2 |
18 |
1 |
1 |
97 |
108 |
32796705816577 |
16301685102646 |
24 |
6 |
1 |
97 |
109 |
44479210368001 |
4294967297 |
5 |
4 |
1 |
1 |
110 |
46179488366593 |
2 |
40 |
1 |
1 |
193 |
111 |
67280421310721 |
2 |
7 |
1 |
1 |
161 |
112 |
76861124116481 |
2 |
27 |
1 |
1 |
161 |
113 |
84885296460737 |
4294967297 |
5 |
18 |
1 |
17 |
? |
151413703311361 |
2 |
28 |
1 |
1 |
1 |
? |
640126220763137 |
2 |
31 |
1 |
1 |
17 |
? |
1095981164658689 |
2 |
31 |
1 |
1 |
209 |
? |
1238926361552897 |
2 |
9 |
1 |
1 |
17 |
? |
1256132134125569 |
2 |
13 |
1 |
1 |
209 |
? |
2327042503868417 |
2 |
16 |
1 |
1 |
17 |
? |
2405286912458753 |
2 |
30 |
1 |
1 |
113 |
? |
2917004348489729 |
2 |
39 |
1 |
1 |
209 |
Note that the first two Fermat primes, F0 = 3 and F1 = 5, are elite, while all other Fermat primes as well as all prime divisors of composite Fermat numbers are anti-elite. When rs = 2, the anti-elite prime p divides the Fermat number Fm–1. Out of the first 100 anti-elite primes, 24 of them are either Fermat primes or divisors of composite Fermat numbers and 76 are not, while of the first 113 anti-elite primes there are 31 of them that are Fermat primes or Fermat divisors and 82 that are neither. Prime divisors of Fermat numbers are compiled by Keller [5].
The elite and anti-elite primes appear as sequences A102742 and A128852 in Sloane’s Online Encyclopedia of Integer Sequences (OEIS) [6].
The sum of the reciprocals of the first 113 anti-elite primes is 0.6644754741377456237324059150…. This value was proven to be convergent in [2] by Chaumont and Müller. The corresponding sum of reciprocals for elite primes has been proven to be convergent by Kķ˛ek, Luca, and Somer [7].
The last column in the table gives the residue of p mod 240. These residue classes are used as part of the Elite and Anti-Elite Search Methodology. Out of (240) = 64 residue classes 16 cannot be anti-elite, leaving 48 possible anti-elite residues modulo 240. It is interesting to note that of those 48 only 9 have appeared so far: {1, 13, 17, 49, 97, 113, 161, 193, 209}, and 13 has only appeared for 13 itself.
For a list of elite primes, see the corresponding Elite Prime Search page [8].
References
[1] Alain Chaumont and Tom Mueller, All Elite Primes Up to 250 Billion, J. Integer Sequences, Vol. 9 (2006), Article 06.3.8.
[2] Tom Mueller, On Anti-Elite Prime Numbers, J. Integer Sequences, Vol. 10 (2007), Article 07.9.4.
[3] Chris Caldwell, The Prime Pages: Jacobi symbol.
[4] Alexander Aigner; Üeber Primzahlen, nach denen (fast) alle Fermatzahlen quadratische Nichtreste sind. Monatsh. Math. 101 (1986), pp. 85-93.
[5] Wilfrid Keller, Fermat factoring status.
[6] N. J. A. Sloane, Online Encyclopedia of Integer Sequences (OEIS), electronically published at: http://oeis.org.
[7] M. Kķ˛ek, F. Luca, L. Somer, On the convergence of series of reciprocals of primes related to the Fermat numbers. J. Number Theory 97 (2002), 95–112.
[8] Dennis R. Martin, Elite Prime Search.
Copyright © 2008-2009 by Dennis R. Martin, ALL RIGHTS RESERVED.
No part of this document may be reproduced, retransmitted, or redistributed by any means, without providing a proper reference crediting Dennis R. Martin.