The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128824 First prime which is 2k greater than the product of lesser twin primes. 0
 5, 7, 11, 13, 17, 19, 23, 37, 29, 31, 47, 37, 41, 43, 47, 61, 53, 67, 59, 61, 227, 67, 71, 73, 89, 79, 83, 97, 89, 103, 107, 97, 101, 103 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS In the example, 37 is the only number possible for 2k=22. Twinl#(1)= 3 and 3+22 = 25, not prime. Twinl#(n), n>2, is a multiple of 11 so adding 22 will always result in a multiple of 11 and not prime. If k is a multiple of a lesser twin prime, then the number of primes in twinl#(n)+2k is finite. LINKS FORMULA Define twinl#(n)as the product of the first n lesser twin primes. Then if twinl#+2k k=1,2,3... is prime, list it. EXAMPLE Twinl#(2) + 2*11 = 37, the first prime 22 greater than twinl#(2). PROG (PARI) twiprimesl(n, a) = { local(pr, x, y, j); for(j=1, n, pr=1; for(x=1, j, pr*=twinl(x); ); y=pr+a; if(ispseudoprime(y), print1(y", ") ) ) } twinl(n) = \The n-th lower twin prime { local(c, x); c=0; x=1; while(c

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 13:36 EDT 2021. Contains 346306 sequences. (Running on oeis4.)