login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128813
Triangle of coefficients of (x+1)*(x+3)*(x+6)*...*(x+n(n+1)/2).
3
1, 1, 1, 1, 4, 3, 1, 10, 27, 18, 1, 20, 127, 288, 180, 1, 35, 427, 2193, 4500, 2700, 1, 56, 1162, 11160, 50553, 97200, 56700, 1, 84, 2730, 43696, 363033, 1512684, 2778300, 1587600, 1, 120, 5754, 141976, 1936089, 14581872, 57234924, 101606400, 57153600
OFFSET
0,5
LINKS
FORMULA
a(0,0)=1, a(1,0)=1, a(1,1)=1, a(i,j)=i*(i+1)/2*a(i-1,j-1)+a(i-1,j), j=0..i-1.
a(i,i) = i*(i+1)/2*a(i-1,i-1).
a(n,n) = Product_{k=1..n} k*(k+1)/2 = A006472(n+1)
Sum_{m=0..n} a(n,m) = Product_{k=1..n} k*(k+1)/2+1 = A128814(n).
EXAMPLE
(x+1)(x+3)(x+6)=x^3+10x^2+27x+18, so a(3,j)=1, 10, 27, 18.
The triangle begins:
1
1, 1
1, 4, 3
1, 10, 27, 18
1, 20, 127, 288, 180
1, 35, 427, 2193, 4500, 2700
1, 56, 1162, 11160, 50553, 97200, 56700
MAPLE
for n from 1 to 9 do b[n]:=n*(n+1)/2 od: a[0, 0]:=1:a[1, 0]:=1:a[1, 1]:=1:for i from 2 to 9 do a[i, 0]:=1:for j from 1 to i-1 do a[i, j]:=b[i]*a[i-1, j-1]+ a[i-1, j] od:a[i, i]:=b[i]*a[i-1, i-1] od: seq(seq(a[i, j], j=0..i), i=0..9);
MATHEMATICA
Flatten[Table[Reverse[CoefficientList[Expand[Times@@Table[x+(n(n+1))/2, {n, i}]], x]], {i, 0, 9}]] (* Harvey P. Dale, Nov 11 2011 *)
PROG
(PARI) row(n) = Vec(prod(i=1, n, (x+i*(i+1)/2))); \\ Michel Marcus, Mar 18 2023
CROSSREFS
Cf. A006472 (right diagonal), A128814 (row sums).
Sequence in context: A039758 A157894 A172106 * A109062 A112493 A370609
KEYWORD
easy,tabl,nonn
AUTHOR
Miklos Kristof, Apr 10 2007
STATUS
approved