login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128748
Number of peaks at height >1 in all skew Dyck paths of semilength n.
2
0, 2, 11, 54, 260, 1247, 5982, 28741, 138364, 667488, 3226503, 15625476, 75802578, 368316888, 1792203759, 8732274312, 42598366616, 208036945958, 1017023261529, 4976560342522, 24372741339016, 119461561111023, 585970198529224
OFFSET
1,2
COMMENTS
A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps.
LINKS
E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
FORMULA
a(n) = Sum_{k=0..n-1} A128747(n,k).
G.f.: (1-4*z+2*z^2+z^3-(1-z+z^2)*sqrt(1-6*z+5*z^2))/(2*z*(2-z)*sqrt(1-6*z+5*z^2)).
a(n) ~ 5^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence 2*(n+2)*a(n) +(-19*n-18)*a(n-1) +(53*n-12)*a(n-2) +2*(-20*n+19)*a(n-3) +(-n+26)*a(n-4) +5*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 17 2016
EXAMPLE
a(2)=2 because in the paths UDUD, U(UD)D and U(UD)L we have altogether 2 peaks at height >1 (shown between parentheses).
MAPLE
G:=(1-4*z+2*z^2+z^3-(1-z+z^2)*sqrt(1-6*z+5*z^2))/2/z/(2-z)/sqrt(1-6*z+5*z^2): Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=1..27);
MATHEMATICA
Rest[CoefficientList[Series[(1-4*x+2*x^2+x^3-(1-x+x^2)*Sqrt[1-6*x+5*x^2]) /2/x/(2-x)/Sqrt[1-6*x+5*x^2], {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) z='z+O('z^50); concat([0], Vec((1-4*z+2*z^2+z^3-(1-z+z^2)*sqrt(1-6*z+5*z^2))/(2*z*(2-z)*sqrt(1-6*z+5*z^2)))) \\ G. C. Greubel, Mar 20 2017
CROSSREFS
Cf. A128747.
Sequence in context: A307568 A161559 A291386 * A251662 A327215 A307444
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 31 2007
STATUS
approved