login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of skew Dyck paths of semilength n having no DD's.
1

%I #12 Jul 29 2022 17:19:05

%S 1,1,2,5,14,41,124,386,1230,3992,13150,43856,147796,502530,1721856,

%T 5939353,20608102,71879003,251876040,886309559,3130552258,11095355269,

%U 39447022648,140645181280,502773092420,1801633916188,6470373097004

%N Number of skew Dyck paths of semilength n having no DD's.

%C A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps.

%H E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203

%F a(n) = A128738(n,0).

%F G.f.: G = G(t,z) satisfies z^2*G^3 - z(1-z)G^2 - (1-z)(1-3z)G + (1-z)^2 = 0.

%F D-finite with recurrence 15*n*(n+1)*a(n) -n*(83*n-49)*a(n-1) +(127*n^2-263*n+90)*a(n-2) +3*(-43*n^2+117*n-20)*a(n-3) +10*(n+1)*(7*n-27)*a(n-4) +16*(n-5)*(4*n-21)*a(n-5) -64*(n-5)*(n-6)*a(n-6)=0. - _R. J. Mathar_, Jul 22 2022

%e a(3)=5 because we have UDUDUD, UDUUDL, UUUDLD, UUDUDL and UUUDLL.

%p eq:=z^2*G^3-z*(1-z)*G^2-(1-z)*(1-3*z)*G+(1-z)^2=0: G:=RootOf(eq,G): Gser:=series(G,z=0,35): seq(coeff(Gser,z,n),n=0..30);

%Y Cf. A128738.

%K nonn

%O 0,3

%A _Emeric Deutsch_, Mar 31 2007