Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jul 22 2022 13:06:18
%S 1,1,3,10,35,127,474,1810,7043,27839,111503,451640,1847032,7616692,
%T 31637664,132252886,555967283,2348920207,9968617393,42477135370,
%U 181661283779,779492777031,3354893322350,14479454240492,62652100034380
%N Number of skew Dyck paths of semilength n and having no LDU's.
%C A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and L=(-1,-1) (left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps.
%H E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
%F a(n) = A128735(n,0).
%F G.f.: G = G(z) satisfies zG^3 = (1-2z)(G-1)(2G-1).
%F D-finite with recurrence 8*n*(n+1)*a(n) -4*n*(11*n-2)*a(n-1) +2*(-11*n^2+114*n-154)*a(n-2) +(61*n-153)*(5*n-16)*a(n-3) -4*(47*n-159)*(n-4)*a(n-4) -220*(n-4)*(n-5)*a(n-5)=0. - _R. J. Mathar_, Jul 22 2022
%e a(4)=35 because among the 36 (=A002212(4)) skew Dyck paths of semilength 4 only UUUDLDUD has a LDU.
%p eq:=z*G^3=(1-2*z)*(G-1)*(2*G-1): G:=RootOf(eq,G): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..27);
%Y Cf. A128735.
%K nonn
%O 0,3
%A _Emeric Deutsch_, Mar 31 2007